首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, microelastic and macroelastic fields are presented for the case of spherical inclusions embedded in an infinite microstretch material using the concept of Green’s functions. The Eshelby tensors are obtained for a spherical inclusion and it is shown that their forms for microelongated, micropolar and the classical cases are the proper limiting cases of the Eshelby tensors of microstretch materials.  相似文献   

2.
The Eshelby-type problem of an arbitrary-shape polyhedral inclusion embedded in an infinite homogeneous isotropic elastic material is analytically solved using a simplified strain gradient elasticity theory (SSGET) that contains a material length scale parameter. The Eshelby tensor for a polyhedral inclusion of arbitrary shape is obtained in a general analytical form in terms of three potential functions, two of which are the same as the ones involved in the counterpart Eshelby tensor based on classical elasticity. These potential functions, as volume integrals over the polyhedral inclusion, are evaluated by dividing the polyhedral inclusion domain into tetrahedral duplexes, with each duplex and the associated local coordinate system constructed using a procedure similar to that employed by Rodin (1996. J. Mech. Phys. Solids 44, 1977–1995). Each of the three volume integrals is first transformed to a surface integral by applying the divergence theorem, which is then transformed to a contour (line) integral based on Stokes' theorem and using an inverse approach different from those adopted in the existing studies based on classical elasticity. The newly derived SSGET-based Eshelby tensor is separated into a classical part and a gradient part. The former contains Poisson's ratio only, while the latter includes the material length scale parameter additionally, thereby enabling the interpretation of the inclusion size effect. This SSGET-based Eshelby tensor reduces to that based on classical elasticity when the strain gradient effect is not considered. For homogenization applications, the volume average of the new Eshelby tensor over the polyhedral inclusion is also provided in a general form. To illustrate the newly obtained Eshelby tensor and its volume average, three types of polyhedral inclusions – cubic, octahedral and tetrakaidecahedral – are quantitatively studied by directly using the general formulas derived. The numerical results show that the components of the SSGET-based Eshelby tensor for each of the three inclusion shapes vary with both the position and the inclusion size, while their counterparts based on classical elasticity only change with the position. It is found that when the inclusion is small, the contribution of the gradient part is significantly large and should not be neglected. It is also observed that the components of the averaged Eshelby tensor based on the SSGET change with the inclusion size: the smaller the inclusion, the smaller the components. When the inclusion size becomes sufficiently large, these components are seen to approach (from below) the values of their classical elasticity-based counterparts, which are constants independent of the inclusion size.  相似文献   

3.
A solution for Eshelby's inclusion problem of a finite homogeneous isotropic elastic body containing an inclusion prescribed with a uniform eigenstrain and a uniform eigenstrain gradient is derived in a general form using a simplified strain gradient elasticity theory (SSGET). An extended Betti's reciprocal theorem and an extended Somigliana's identity based on the SSGET are proposed and utilized to solve the finite-domain inclusion problem. The solution for the disturbed displacement field is expressed in terms of the Green's function for an infinite three-dimensional elastic body in the SSGET. It contains a volume integral term and a surface integral term. The former is the same as that for the infinite-domain inclusion problem based on the SSGET, while the latter represents the boundary effect. The solution reduces to that of the infinite-domain inclusion problem when the boundary effect is not considered. The problem of a spherical inclusion embedded concentrically in a finite spherical elastic body is analytically solved by applying the general solution, with the Eshelby tensor and its volume average obtained in closed forms. This Eshelby tensor depends on the position, inclusion size, matrix size, and material length scale parameter, and, as a result, can capture the inclusion size and boundary effects, unlike existing Eshelby tensors. It reduces to the classical Eshelby tensor for the spherical inclusion in an infinite matrix if both the strain gradient and boundary effects are suppressed. Numerical results quantitatively show that the inclusion size effect can be quite large when the inclusion is very small and that the boundary effect can dominate when the inclusion volume fraction is very high. However, the inclusion size effect is diminishing as the inclusion becomes large enough, and the boundary effect is vanishing as the inclusion volume fraction gets sufficiently low.  相似文献   

4.
Classical continuum micromechanics cannot predict the particle size dependence of the overall plasticity for composite materials, a simple analytical micromechanical method is proposed in this paper to investigate this size dependence. The matrix material is idealized as a micropolar continuum, an average equivalent inclusion method is advanced and the Mori–Tanaka's method is extended to a micropolar medium to evaluate the effective elastic modulus tensor. The overall plasticity of composites is predicted by a new secant moduli method based on the second order moment of strain and torsion of the matrix in a framework of micropolar theory. The computed results show that the size dependence is more pronounced when the particle's size approaches to the matrix characteristic length, and for large particle sizes, the prediction coincides with that predicted by classical micromechanical models. The method is analytical in nature, and it can capture the particle size dependence on the overall plastic behavior for particulate composites, and the prediction agrees well with the experimental results presented in literature. The proposed model can be considered as a natural extension of the widely used secant moduli method from a heterogeneous Cauchy medium to a micropolar composite.  相似文献   

5.
A general micromechanical method is developed for a micropolar composite with ellipsoidal fibers, where the matrix material is idealized as a micropolar material model. The method is based on a special micro–macro transition method, and the classical effective moduli for micropolar composites can be determined in an analytical way. The influence of both fiber’s shape and size can be analyzed by the proposed method. The effective moduli, initial yield surface and effective nonlinear stress and strain relation for a micropolar composite reinforced by ellipsoidal fibers are examined, it is found that the prediction on the effective moduli and effective nonlinear stress and strain curves are always higher than those based on classical Cauchy material model, especially for the case where the size of fiber approaches to the characteristic length of matrix material. As expected, when the size of fiber is sufficiently large, the classical results (size-independence) can be recovered.  相似文献   

6.
When studying the regular polygonal inclusion in 1997, Nozaki and Taya discovered numerically some remarkable properties of Eshelby tensor: Eshelby tensor at the center and the averaged Eshelby tensor over the inclusion domain are equal to that of a circular inclusion and independent of the orientation of the inclusion. Then Kawashita and Nozaki justified the properties mathematically. In the present paper, some other properties of a regular polygonal inclusion are discovered. We find that for an N-fold regular polygonal inclusion except for a square, the arithmetic mean of Eshelby tensors at N rotational symmetrical points in the inclusion is also equal to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. Furthermore, in two corollaries, we point out that Eshelby tensor at the center, the averaged Eshelby tensor over the inclusion domain, and the line integral average of Eshelby tensors along any concentric circle of the inclusion are all identical with the arithmetic mean.The project supported by the National Natural Science Foundation of China (10172003 and 10372003) The English text was polished by Keren Wang.  相似文献   

7.
The Eshelby problem consists in determining the strain field of an infinite linearly elastic homogeneous medium due to a uniform eigenstrain prescribed over a subdomain, called inclusion, of the medium. The salient feature of Eshelby's solution for an ellipsoidal inclusion is that the strain tensor field inside the latter is uniform. This uniformity has the important consequence that the solution to the fundamental problem of determination of the strain field in an infinite linearly elastic homogeneous medium containing an embedded ellipsoidal inhomogeneity and subjected to remote uniform loading can be readily deduced from Eshelby's solution for an ellipsoidal inclusion upon imposing appropriate uniform eigenstrains. Based on this result, most of the existing micromechanics schemes dedicated to estimating the effective properties of inhomogeneous materials have been nevertheless applied to a number of materials of practical interest where inhomogeneities are in reality non-ellipsoidal. Aiming to examine the validity of the ellipsoidal approximation of inhomogeneities underlying various micromechanics schemes, we first derive a new boundary integral expression for calculating Eshelby's tensor field (ETF) in the context of two-dimensional isotropic elasticity. The simple and compact structure of the new boundary integral expression leads us to obtain the explicit expressions of ETF and its average for a wide variety of non-elliptical inclusions including arbitrary polygonal ones and those characterized by the finite Laurent series. In light of these new analytical results, we show that: (i) the elliptical approximation to the average of ETF is valid for a convex non-elliptical inclusion but becomes inacceptable for a non-convex non-elliptical inclusion; (ii) in general, the Eshelby tensor field inside a non-elliptical inclusion is quite non-uniform and cannot be replaced by its average; (iii) the substitution of the generalized Eshelby tensor involved in various micromechanics schemes by the average Eshelby tensor for non-elliptical inhomogeneities is in general inadmissible.  相似文献   

8.
In many dynamic applications of theoretical physics, for instance in electrodynamics, elastodynamics, and materials sciences (dynamic variant of Eshelby’s inclusion and inhomogeneity problems) the solution of the inhomogeneous Helmholtz equation (‘dynamic’ or Helmholtz potential) plays a crucial role. In materials sciences from such a solution the dynamical fields due to harmonically transforming eigenfields can be constructed. In contrast to the static Eshelby’s inclusion problem (Eshelby, 1957), due to its mathematical complexity, the dynamic variant of the problem is comparably little touched. Only for a restricted set of cases, namely for ellipsoidal, spheroidal and continuous fiber-inclusions, analytical approaches exist. For ellipsoidal shells we derive a 1D integral representation of the Helmholtz potential which is useful to be extended to inhomogeneous ellipsoidal source regions. We determine the dynamic potential and dynamic variant of the Eshelby tensor for arbitrary source densities and distributions by employing a numerical technique based on Gauss quadrature. We study a series of examples of Eshelby problems which are of interest for applications in materials sciences, such as for instance cubic and prismatic inclusions. The method is especially useful to be applied in self-consistent methods (e.g. the effective field method) if one looks for the effective dynamic characteristics of the material containing a random set of inclusions.  相似文献   

9.
In 1997, H. Nozaki and M. Taya found numerically that for any regular polygonal inclusion except for a square, both the Eshelby tensor at the center and the average Eshelby tensor over the inclusion domain are equal to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. Then in 2001, these remarkable properties were mathematically justified by Kawashita and Nozaki. In this paper, a more radical property is presented for a rotational symmetrical inclusion: For any N-fold (N is an integer greater than 2 and unequal to 4) rotational symmetrical inclusion, the arithmetic mean of the Eshelby tensors at N rotational symmetrical points in the inclusion is the same as the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. It follows that the Eshelby tensor at the center and the average Eshelby tensor over the rotational symmetrical inclusion domain are identical to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion as well. This paper shows that although the Eshelby property does not hold for non-ellipsoidal inclusions, the Eshelby tensor for a rotational symmetrical inclusion satisfies the arithmetic mean property. Mathematics Subject Classifications (2000) 73C02.  相似文献   

10.
A solution for the finite-domain Eshelby-type inclusion problem of a finite elastic body containing an anti-plane strain inclusion of arbitrary cross-sectional shape prescribed with a uniform eigenstrain and a uniform eigenstrain gradient is derived in a general form using a simplified strain gradient elasticity theory (SSGET). The formulation is facilitated by an extended Betti’s reciprocal theorem and an extended Somigliana’s identity based on the SSGET and suitable for anti-plane strain problems. The disturbed displacement field is obtained in terms of the SSGET-based Green’s function for an infinite anti-plane strain elastic body. The solution reduces to that of the infinite-domain anti-plane strain inclusion problem when the boundary effect is not considered. The problem of a circular cylindrical inclusion embedded concentrically in a finite cylindrical elastic matrix undergoing anti-plane strain deformations is analytically solved by applying the general solution, with the Eshelby tensor and its average over the circular cross section of the inclusion obtained in closed forms. This Eshelby tensor, being dependent on the position, inclusion size, matrix size, and a material length scale parameter, captures the inclusion size and boundary effects, unlike existing ones. It reduces to the classical linear elasticity-based Eshelby tensor for the circular cylindrical inclusion in an infinite matrix if both the strain gradient and boundary effects are suppressed. Numerical results quantitatively show that the inclusion size effect can be quite large when the inclusion is small and that the boundary effect can dominate when the inclusion volume fraction is high. However, the inclusion size effect is diminishing with the increase of the inclusion size, and the boundary effect is vanishing as the inclusion volume fraction becomes sufficiently low.  相似文献   

11.
A solution for the finite-domain Eshelby-type inclusion problem of a finite elastic body containing a plane strain inclusion prescribed with a uniform eigenstrain and a uniform eigenstrain gradient is derived in a general form using a simplified strain gradient elasticity theory (SSGET). The formulation is facilitated by an extended Betti’s reciprocal theorem and an extended Somigliana’s identity based on the SSGET and suitable for plane strain problems. The disturbed displacement field is obtained in terms of the SSGET-based Green’s function for an infinite plane strain elastic body, which differs from that in earlier studies using the three-dimensional Green’s function. The solution reduces to that of the infinite-domain inclusion problem when the boundary effect is suppressed. The problem of a cylindrical inclusion embedded concentrically in a finite plane strain cylindrical elastic matrix of an enhanced continuum is analytically solved for the first time by applying the general solution, with the Eshelby tensor and its average over the circular cross section of the inclusion obtained in closed forms. This Eshelby tensor, being dependent on the position, inclusion size, matrix size, and a material length scale parameter, captures the inclusion size and boundary effects, unlike existing ones. It reduces to the classical elasticity-based Eshelby tensor for the cylindrical inclusion in an infinite matrix if both the strain gradient and boundary effects are not considered. Numerical results quantitatively show that the inclusion size effect can be quite large when the inclusion is very small and that the boundary effect can dominate when the inclusion volume fraction is very high. However, the inclusion size effect is diminishing with the increase of the inclusion size, and the boundary effect is vanishing as the inclusion volume fraction becomes sufficiently low.  相似文献   

12.
In this work, a modeling of electroelastic composite materials is proposed. The extension of the heterogeneous inclusion problem of Eshelby for elastic to electroelastic behavior is formulated in terms of four interaction tensors related to Eshelby’s electroelastic tensors. Analytical formulations of interaction tensors are presented for ellipsoidal inclusions. These tensors are basically used to derive the self-consistent model, Mori–Tanaka and dilute approaches. Numerical solutions are based on numerical computations of these tensors for various types of inclusions. Using the obtained results, effective electroelastic moduli of piezoelectric multiphase composites are investigated by an iterative procedure in the context of self-consistent scheme. Generalised Mori–Tanaka’s model and dilute approach are re-formulated and the three models are deeply analysed. Concentration tensors corresponding to each model are presented and relationships of effective coefficients are given. Numerical results of effective electroelastic moduli are presented for various types of piezoelectric inclusions and for various orientations and compared to existing experimental and theoretical ones.  相似文献   

13.
In the framework of the classical field theory and using the theory of action variational symmetries, we consider the construction of canonical energy-momentum tensors for a coupled micropolar thermoelastic field taking account of the nonlocality of the Lagrangian density, which is typical of continuum micromechanics. We use the algorithms of group analysis to calculate the Noether currents and the energy-momentum tensors in three cases where the Lagrangian depends on the gradients of field variables of orders not exceeding 1, 2, and 3. In each of these cases, we present explicit formulas for the components of the canonical energy-momentum tensor. We construct the energy-momentum tensor for micropolar thermoelastic bodies in which the heat conduction process is characterized by a generalized heat equation of hyperbolic analytical type. In the equations of micropolar thermoelastic field, all possible restrictions on the microrotations are taken into account.  相似文献   

14.
At small length scales and/or in presence of large field gradients, the implicit long wavelength assumption of classical elasticity breaks down. Postulating a form of second gradient elasticity with couple stresses as a suitable phenomenological model for small-scale elastic phenomena, we herein extend Eshelby’s classical formulation for inclusions and inhomogeneities. While the modified size-dependent Eshelby’s tensor and hence the complete elastic state of inclusions containing transformation strains or eigenstrains is explicitly derived, the corresponding inhomogeneity problem leads to integrals equations which do not appear to have closed-form solutions. To that end, Eshelby’s equivalent inclusion method is extended to the present framework in form of a perturbation series that then can be used to approximate the elastic state of inhomogeneities. The approximate scheme for inhomogeneities also serves as the basis for establishing expressions for the effective properties of composites in second gradient elasticity with couple stresses. The present work is expected to find application towards nano-inclusions and certain types of composites in addition to being the basis for subsequent non-linear homogenization schemes.  相似文献   

15.
Eshelby showed that if an inclusion is of elliptic or ellipsoidal shape then for any uniform elastic loading the field inside the inclusion is uniform. He then conjectured that the converse is true, that is, that if the field inside an inclusion is uniform for all uniform loadings, then the inclusion is of elliptic or ellipsoidal shape. We call this the weak Eshelby conjecture. In this paper we prove this conjecture in three dimensions. In two dimensions, a stronger conjecture, which we call the strong Eshelby conjecture, has been proved: if the field inside an inclusion is uniform for a single uniform loading, then the inclusion is of elliptic shape. We give an alternative proof of Eshelby’s conjecture in two dimensions using a hodographic transformation. As a consequence of the weak Eshelby’s conjecture, we prove in two and three dimensions a conjecture of Pólya and Szegö on the isoperimetric inequalities for the polarization tensors (PTs). The Pólya–Szegö conjecture asserts that the inclusion whose electrical PT has the minimal trace takes the shape of a disk or a ball.  相似文献   

16.
The bulk and shear modulus of metal matrix composites with various volume fractions of particles are modified based on the Eshelby’s equivalent inclusion method combined with self-consistent scheme. By introducing the modified modulus, a new model, which can predict the particle size effects on the stress–strain relation under interfacial debonding damage between matrix and particles, is established. The results obtained from the present investigation show a better agreement with the experimental data.  相似文献   

17.
The theory of linear micropolar elasticity is used in conjunction with a new representation of micropolar surface mechanics to develop a comprehensive model for the deformations of a linearly micropolar elastic solid subjected to anti-plane shear loading. The proposed model represents the surface effect as a thin micropolar film of separate elasticity, perfectly bonded to the bulk. This model captures not only the micro-mechanical behavior of the bulk which is known to be considerable in many real materials but also the contribution of the surface effect which has been experimentally well observed for bodies with significant size-dependency and large surface area to volume ratios. The contribution of the surface mechanics to the ensuing boundary-value problem gives rise to a highly nonstandard boundary condition not accommodated by classical studies in this area. Nevertheless, the corresponding interior and exterior mixed boundary-value problems are formulated and reduced to systems of singular integro-differential equations using a representation of solutions in the form of modified single-layer potentials. Analysis of these systems demonstrates that the classical Noether theorems reduce to Fredholms theorems leading to results on well-posedness of the corresponding mathematical model.  相似文献   

18.
Consider an infinite thermally conductive medium characterized by Fourier’s law, in which a subdomain, called an inclusion, is subjected to a prescribed uniform heat flux-free temperature gradient. The second-order tensor field relating the gradient of the resulting temperature field over the medium to the uniform heat flux-free temperature gradient is referred to as Eshelby’s tensor field for conduction. The present work aims at deriving the general properties of Eshelby’s tensor field for conduction. It is found that: (i) the trace of Eshelby’s tensor field is equal to the characteristic function of the inclusion, independently of the latter’s shape; (ii) the isotropic part of Eshelby’s tensor field over the inclusion of arbitrary shape is identical to Eshelby’s tensor field over a 2D circular or 3D spherical inclusion; (iii) when the medium is made of an isotropic material and when the inclusion has some specific rotational symmetries, the value of the Eshelby’s tensor field evaluated at the inclusion gravity center and the symmetric average of Eshelby’s tensor fields are both equal to Eshelby’s tensor field for a 2D circular or 3D spherical inclusion. These results are then extended, with the help of a linear transformation, to the general case where the medium consists of an anisotropic conductive material. The method elaborated and results obtained by the present work are directly transposable to the physically analogous transport phenomena of electric conduction, dielectrics, magnetism, diffusion and flow in porous media and to the mathematically identical phenomenon of anti-plane elasticity.  相似文献   

19.
20.
In this paper linearly thermoelastic composite media are treated, which consist of a homogeneous matrix containing a statistically homogeneous random set of heterogeneities. Effective properties (such as compliance, thermal expansion, stored energy) as well as the first statistical moments of stresses in the phases are estimated for the general case of nonhomogeneity of the thermoelastic inclusion properties. The micromechanical approach is based on the generalization of the “multiparticle effective field” method (MEFM, see for references Buryachenko, Appl. Mech. Rev. (2001), 54, 1–47), previously proposed for the estimation of stress field averages in the phases. The method exploits as a background the new general integral equation proposed by the author before and makes it possible to abandon the use of the central concept of classical micromechanics such as effective field hypothesis as well as their satellite hypothesis of “ellipsoidal symmetry”. The implicit recursion representations of the effective thermoelastic properties and stress concentration factor are expressed through some building blocks described by numerical solutions for both the one and two inclusions inside the infinite medium subjected to the inhomogeneous effective fields evaluated from subsequent self-consistent estimations. One also estimates the inhomogeneous statistical moments of local stress fields which are extremely useful for understanding the evolution of nonlinear phenomena such as plasticity, creep, and damage. Just at some additional assumptions (such as an effective field hypothesis) the involved tensors can be expressed through the Green function, Eshelby tensor and external Eshelby tensor. These estimated inhomogeneities of effective fields lead to the detection of fundamentally new effects for the local stresses inside the heterogeneities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号