首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
Let k ≥ 2 be an integer. A function f: V(G) → {?1, 1} defined on the vertex set V(G) of a graph G is a signed k-independence function if the sum of its function values over any closed neighborhood is at most k ? 1. That is, Σ xN[v] f(x) ≤ k ? 1 for every vV(G), where N[v] consists of v and every vertex adjacent to v. The weight of a signed k-independence function f is w(f) = Σ vV(G) f(v). The maximum weight w(f), taken over all signed k-independence functions f on G, is the signed k-independence number α s k (G) of G. In this work, we mainly present upper bounds on α s k (G), as for example α s k (G) ≤ n ? 2?(Δ(G) + 2 ? k)/2?, and we prove the Nordhaus-Gaddum type inequality $\alpha _S^k \left( G \right) + \alpha _S^k \left( {\bar G} \right) \leqslant n + 2k - 3$ , where n is the order, Δ(G) the maximum degree and $\bar G$ the complement of the graph G. Some of our results imply well-known bounds on the signed 2-independence number.  相似文献   

3.
The nullity of a graph is defined as the multiplicity of the eigenvalue zero in the spectrum of the adjacency matrix of the graph. We investigate a class of graphs with pendant trees, and express the nullity of such graph in terms of that of its subgraphs. As an application of our results, we characterize unicyclic graphs with a given nullity.  相似文献   

4.
A spanning tree without a vertex of degree two is called a HIST, which is an abbreviation for homeomorphically irreducible spanning tree. We provide a necessary condition for the existence of a HIST in a cubic graph. As one consequence, we answer affirmatively an open question on HISTs by Albertson, Berman, Hutchinson, and Thomassen. We also show several results on the existence of HISTs in plane and toroidal cubic graphs.  相似文献   

5.
In this paper, we consider a class of nonlinear matrix equation of the type \(X+\sum _{i=1}^mA_i^{*}X^{-q}A_i-\sum _{j=1}^nB_{j}^{*}X^{-r}B_j=Q\), where \(0<q,\,r\le 1\) and Q is positive definite. Based on the Schauder fixed point theorem and Bhaskar–Lakshmikantham coupled fixed point theorem, we derive some sufficient conditions for the existence and uniqueness of the positive definite solution to such equations. An iterative method is provided to compute the unique positive definite solution. A perturbation estimation and the explicit expression of Rice condition number of the unique positive definite solution are also established. The theoretical results are illustrated by numerical examples.  相似文献   

6.
We investigate those graphs Gn with the property that any tree on n vertices occurs as subgraph of Gn. In particular, we consider the problem of estimating the minimum number of edges such a graph can have. We show that this number is bounded below and above by 12n log n and n1+1log log n, respectively.  相似文献   

7.
Given a weighted graph, letW 1,W 2,W 3,... denote the increasing sequence of all possible distinct spanning tree weights. Settling a conjecture due to Kano, we prove that every spanning tree of weightW 1 is at mostk–1 edge swaps away from some spanning tree of weightW k . Three other conjectures posed by Kano are proven for two special classes of graphs. Finally, we consider the algorithmic complexity of generating a spanning tree of weightW k .This work was supported in part by a grant from the AT&T foundation and NSF grant DCR-8351757.Primarily supported by a 1967 Science and Engineering Scholarship from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

8.
We consider the effects on the algebraic connectivity of various graphs when vertices and graphs are appended to the original graph. We begin by considering weighted trees and appending a single isolated vertex to it by adding an edge from the isolated vertex to some vertex in the tree. We then determine the possible set vertices in the tree that can yield the maximum change in algebraic connectivity under such an operation. We then discuss the changes in algebraic connectivity of a star when various graphs such as trees and complete graphs are appended to its pendant vertices.  相似文献   

9.
We consider the effects on the algebraic connectivity of various graphs when vertices and graphs are appended to the original graph. We begin by considering weighted trees and appending a single isolated vertex to it by adding an edge from the isolated vertex to some vertex in the tree. We then determine the possible set vertices in the tree that can yield the maximum change in algebraic connectivity under such an operation. We then discuss the changes in algebraic connectivity of a star when various graphs such as trees and complete graphs are appended to its pendant vertices.  相似文献   

10.
IfG is a finite undirected graph ands is a vertex ofG, then two spanning treesT 1 andT 2 inG are calleds — independent if for each vertexx inG the paths fromx tos inT 1 andT 2 are openly disjoint. It is known that the following statement is true fork3: IfG isk-connected, then there arek pairwises — independent spanning, trees inG. As a main result we show that this statement is also true fork=4 if we restrict ourselves to planar graphs. Moreover we consider similar statements for weaklys — independent spanning trees (i.e., the tree paths from a vertex tos are edge disjoint) and for directed graphs.  相似文献   

11.
The distance between a pair of vertices u, v in a graph G is the length of a shortest path joining u and v. The diameter diam(G) of G is the maximum distance between all pairs of vertices in G. A spanning tree T of G is diameter preserving if diam(T) = diam(G). In this note, we characterize graphs that have diameter-preserving spanning trees.  相似文献   

12.
For a connected graph G let L(G) denote the maximum number of leaves in any spanning tree of G. We give a simple construction and a complete proof of a result of Storer that if G is a connected cubic graph on n vertices, then L(G) ? [(n/4) + 2], and this is best possible for all (even) n. The main idea is to count the number of “dead leaves” as the tree is being constructed. This method of amortized analysis is used to prove the new result that if G is also 3-connected, then L(G) ? [(n/3) + (4/3)], which is best possible for many n. This bound holds more generally for any connected cubic graph that contains no subgraph K4 - e. The proof is rather elaborate since several reducible configurations need to be eliminated before proceeding with the many tricky cases in the construction.  相似文献   

13.
14.
Chvátal established that r(Tm, Kn) = (m – 1)(n – 1) + 1, where Tm is an arbitrary tree of order m and Kn is the complete graph of order n. This result was extended by Chartrand, Gould, and Polimeni who showed Kn could be replaced by a graph with clique number n and order n + 1 provided n ≧ 3 and m ≧ 3. We further extend these results to show that Kn can be replaced by any graph on n + 2 vertices with clique number n, provided n ≧ 5 and m ≧ 4. We then show that further extensions, in particular to graphs on n + 3 vertices with clique number n are impossible. We also investigate the Ramsey number of trees versus complete graphs minus sets of independent edges. We show that r(Tm, Kn –tK2) = (m – 1)(n – t – 1) + 1 for m ≧ 3, n ≧ 6, where Tm is any tree of order m except the star, and for each t, O ≦ t ≦ [(n – 2)/2].  相似文献   

15.
16.
17.
We construct spanning trees in locally finite hyperbolic graphs that represent their hyperbolic compactification in a good way: so that the tree has at least one but at most a bounded number of disjoint rays to each boundary point. As a corollary we extend a result of Gromov which says that from every hyperbolic graph with bounded degrees one can construct a tree (disjoint from the graph) with a continuous surjection from the ends of the tree onto the hyperbolic boundary such that the surjection is finite-to-one. We shall construct a tree with these properties as a subgraph of the hyperbolic graph, which in addition is also a spanning tree of that graph.  相似文献   

18.
Let T be any tree of order d≥1. We prove that every connected graph G with minimum degree d contains a subtree T isomorphic to T such that GV(T) is connected.  相似文献   

19.
A multicolored tree is a tree whose edges have different colors. Brualdi and Hollingsworth 5 proved in any proper edge coloring of the complete graph K2n(n > 2) with 2n ? 1 colors, there are two edge‐disjoint multicolored spanning trees. In this paper we generalize this result showing that if (a1,…, ak) is a color distribution for the complete graph Kn, n ≥ 5, such that , then there exist two edge‐disjoint multicolored spanning trees. Moreover, we prove that for any edge coloring of the complete graph Kn with the above distribution if T is a non‐star multicolored spanning tree of Kn, then there exists a multicolored spanning tree T' of Kn such that T and T' are edge‐disjoint. Also it is shown that if Kn, n ≥ 6, is edge colored with k colors and , then there exist two edge‐disjoint multicolored spanning trees. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 221–232, 2007  相似文献   

20.
We discuss the existence of multi-colored trees in randomly colored, random graphs. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号