首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper dynamic stress intensity factor and strain energy density factor of multiple cracks in the functionally graded orthotropic half-plane under time-harmonic loading are investigated. By utilizing the Fourier transformation technique the stress fields are obtained for a functionally graded orthotropic half-plane containing a Volterra screw dislocation. The variations of the material properties are assumed to be exponential forms which the equilibrium has an analytical solution. The dislocation solution is utilized to formulate integral equation for the half-plane weakened by multiple smooth cracks under anti-plane deformation. The integral equations are of Cauchy singular type at the location of dislocation which are solved numerically to obtain the dislocation density on the faces of the cracks. The dislocation densities are employed to determined stress intensity factor and strain energy density factors (SEDFs) for multiple smooth cracks under anti-plane deformation. Numerical examples are provided to show the effects of material properties and the crack configuration on the dynamic stress intensity factors and SEDFs of the functionally graded orthotropic half-plane with multiple curved cracks.  相似文献   

2.
The stress fields are obtained for a functionally graded half-plane containing a Volterra screw dislocation.The elastic shear modulus of the medium is considered to vary exponentially.The dislocation s...  相似文献   

3.
In this study, the transient response of multiple cracks subjected to shear impact load in a half-plane is investigated. At first, exact analytical solution for the transient response of Volterra-type dislocation in a half-plane is obtained by using the Cagniard-de Hoop method of Laplace inversion and is expressed in explicit forms. The distributed dislocation technique is used to construct integral equations for a half-plane weakened by multiple arbitrary cracks. These equations are of Cauchy singular type at the location of dislocation solved numerically to obtain the dislocation density on the cracks faces. The dislocation densities are employed to determine dynamic stress intensity factors history for multiple smooth cracks. Finally, several examples are presented to demonstrate the applicability of the proposed solution.  相似文献   

4.
The stress fields in an infinite plane containing Volterra type climb and glide edge dislocations under time-harmonic excitation are derived. The dislocation solutions are utilized to formulate integral equations for dislocation density functions on the surfaces of smooth cracks. The integral equations are of Cauchy singular type which are solved numerically for several different cases of crack configurations and arrangements. The results are used to evaluate modes I and II stress intensity factors for multiple smooth cracks.  相似文献   

5.
利用复变函数和奇异积分方程方法,求解反平面弹性中半平面边缘内分叉裂纹问题。提出了满足半平面边界自由的由分布位错密度表示的半平面中单裂纹的基本解,此基本解由主要部分和辅助部分组成。将半平面边缘内分叉裂纹问题看作是许多单裂纹问题的叠加,建立了以分布位错密度为未知函数的Cauchy型奇异积分方程组。然后,利用半开型积分法则求解奇异积分方程,得到了裂纹端处的应力强度因子。文中给出两个数值算例的计算结果。  相似文献   

6.
This paper contains a theoretical formulations and solutions of multiple cracks sub- jected to an anti-plane time-harmonic point load in a functionally graded strip. The distributed dislocation technique is used to construct integral equations for a functionally graded material strip weakened by several cracks under anti-plane time-harmonic load. These equations are of Cauchy singular type at the location of dislocation, which are solved numerically to obtain the dislocation density on the faces of the cracks. The dislocation densities are employed to evaluate the stress intensity factor and strain energy density factors (SEDFs) for multiple cracks with differ- ent configurations. Numerical calculations are presented to show the effects of material properties and the crack configuration on the dynamic stress intensity factors and SEDFs of the functionally graded strip with multiple curved cracks.  相似文献   

7.
The stress fields in an orthotropic layer containing climb and glide edge dislocations are obtained by means of the complex Fourier transform. Stress analysis in the intact layer under in-plane point loads is also carried out. These solutions are employed to derive integral equations for the layers weakened by several interacting cracks subject to in-plane deformation. The integral equations are of Cauchy singular type. These equations are solved numerically for the density of dislocations on a crack surface. The dislocation densities are utilized to derive stress intensity factor for cracks. Several examples are solved and the interaction between the two cracks is investigated.  相似文献   

8.
The solutions of axisymmetric Volterra type climb and glide edge dislocations are obtained in a layer by means of the Hankel transforms. Utilizing the same procedure, Green’s function solution is obtained for a layer under self-equilibration normal ring traction. The distributed dislocation technique is used to construct integral equations for a system of co-axial annular cracks where the layer is under axisymmetric normal loads. These equations are solved numerically to obtain dislocation density on the cracks surfaces. The results are employed to determine stress intensity factors for annular and penny-shaped cracks and the interaction between two co-axial penny-shaped cracks is studied. Moreover, the stress intensity factors of the interacting cracks are determined such that they can be further used in conjunction with strain energy density (SED) failure criterion to obtain the possible direction of crack initiation that may not be apparent under mixed mode conditions.  相似文献   

9.
半平面多边缘裂纹反平面问题的奇异积分方程   总被引:1,自引:0,他引:1  
利用复变函数和奇异积分方程方法,求解弹性范围内半平面多边缘裂纹的反平面问题.提出了满足半平面边界自由的由分布位错密度表示的单边缘裂纹的基本解,此基本解由主要部分和辅助部分组成.将半平面多边缘裂纹问题看作是许多单边缘裂纹问题的叠加,建立了一组Cauchy型奇异积分方程.然后,利用半开型积分法则求解该奇异积分方程,得到了裂纹端处的应力强度因子.最后,给出了几个数值算例.  相似文献   

10.
Some composite materials are constructed of two dissimilar half-planes bonded by a nonhomogeneous elastic layer. In the present study, a crack is situated at the interface between the upper half-plane and the bonding layer of such a material, and another crack is located at the interface between the lower half-plane and the bonding layer. The material properties of the bonding layer vary continuously from those of the lower half-plane to those of the upper half-plane. Incoming shock stress waves impinge upon the two interface cracks normal to their surfaces. Fourier transformations were used to reduce the boundary conditions for the cracks to two pairs of dual integral equations in the Laplace domain. To solve these equations, the differences in the crack surface displacements were expanded in a series of functions that are zero-valued outside the cracks. The unknown coefficients in the series were solved using the Schmidt method so as to satisfy the conditions inside the cracks. The stress intensity factors were defined in the Laplace domain and were inverted numerically to physical space. Dynamic stress intensity factors were calculated numerically for selected crack configurations.  相似文献   

11.
涉及两相正交各向异性体界面干涉问题的研究,多裂纹问题被分解为只含单裂纹的子问题,利用位错理论和裂面应力自由条件,列出一组可数值求解位错密度函数的奇异积分方程,从耐 注得应力强度因子。  相似文献   

12.
Summary In this paper, the scattering of SH waves by a magneto-electro-elastic cylindrical inclusion partially debonded from its surrounding magneto-electro-elastic material is investigated by using the wavefunction expansion method and a singular integral equation technique. The debonding regions are modeled as multiple arc-shaped interface cracks with non-contacting faces. The magneto-electric impermeable boundary conditions are adopted. By expressing the scattered fields as wavefunction expansions with unknown coefficients, the mixed boundary-value problem is firstly reduced to a set of simultaneous dual-series equations. Then, dislocation density functions are introduced as unknowns to transform these dual-series equations to Cauchy singular integral equations of the first type,which can be numerically solved easily. The solution is valid for arbitrary number and size of the arc-shaped interface cracks. Finally, numerical results of the dynamic stress intensity factors are presented for the cases of one debond. The effects of incident direction, crack configuration and various material parameters on the dynamic stress intensity factors are discussed. The solution of this problem is expected to have applications in the investigation of dynamic fracture properties of magneto-electro-elastic materials with cracks.The work was supported by the National Natural Science Fund of China (Project No. 19772029) and the Research Fund for Doctors of Hebei Province, China (Project No. B2001213).  相似文献   

13.
I. INTRODUCTION Owing to the intrinsic coupling characteristics between electric and elastic behaviors, piezoelectricmaterials have been used widely in technology such as transducers, actuators, sensors, etc. Studieson electroelastic problems of a piezo…  相似文献   

14.
The two-dimensional thermoelastic crack problem in bonded dissimilar media or in a half-plane medium is considered. The proposed method for solving this problem consists of two parts. In the first part, complex potential functions are derived which are enforced to satisfy the continuity conditions across the interface, while the second part consists of the derivation of singular integral equations by introducing the dislocation functions along the crack border which are solved numerically. For both half-plane and two bonded half-plane problems associated with an insulated crack, the thermal stress intensity factors are computed numerically by using the appropriate interpolation formulae. The results compared with those of the homogeneous case given in the literature show that the method proposed here is effective, simple and general.  相似文献   

15.
Summary For a two-dimensional piezoelectric plate, the thermoelectroelastic Green's functions for bimaterials subjected to a temperature discontinuity are presented by way of Stroh formalism. The study shows that the thermoelectroelastic Green's functions for bimaterials are composed of a particular solution and a corrective solution. All the solutions have their singularities, located at the point applied by the dislocation, as well as some image singularities, located at both the lower and the upper half-plane. Using the proposed thermoelectroelastic Green's functions, the problem of a crack of arbitrary orientation near a bimaterial interface between dissimilar thermopiezoelectric material is analysed, and a system of singular integral equations for the unknown temperature discontinuity, defined on the crack faces, is obtained. The stress and electric displacement (SED) intensity factors and strain energy density factor can be, then, evaluated by a numerical solution at the singular integral equations. As a consequence, the direction of crack growth can be estimated by way of strain energy density theory. Numerical results for the fracture angle are obtained to illustrate the application of the proposed formulation. Received 10 November 1997; accepted for publication 3 February 1998  相似文献   

16.
The dynamic behavior of two parallel symmetric cracks in functionally graded piezoelectric/piezomagnetic materials subjected to harmonic antiplane shear waves is investigated using the Schmidt method. The present problem can be solved using the Fourier transform and the technique of dual integral equations, in which the unknown variables are jumps of displacements across the crack surfaces, not dislocation density functions. To solve the dual integral equations, the jumps of displacements across the crack surfaces are directly expanded as a series of Jacobi polynomials. Finally, the relations among the electric, magnetic flux, and dynamic stress fields near crack tips can be obtained. Numerical examples are provided to show the effect of the functionally graded parameter, the distance between the two parallel cracks, and the circular frequency of the incident waves upon the stress, electric displacement, and magnetic flux intensity factors at crack tips.  相似文献   

17.
The stress fields are obtained for a functionally graded strip containing a Volterra screw dislocation. The elastic shear modulus of the medium is considered to vary exponentially. The stress components exhibit Cauchy as well as logarithmic singularities at the dislocation location. The dislocation solution is utilized to formulate integral equations for the strip weakened by multiple smooth cracks under anti-plane deformation. Several examples are solved and stress intensity factors are obtained.  相似文献   

18.
In this paper, the stress-intensity factors for two collinear cracks in a composite bonded by an isotropic and an anisotropic half-plane were calculated. The cracks are paralell to the interface, and the crack surfaces are loaded by uniform shear stresses. By using Fourier transform, the mixed boundary value problem is reduced to a set of singular integral equations. For solving the integral equations, the crack surface displacements are expanded in triangular series and the unknown coefficients in the series are determined by the Schmidt method. The stress intensity factors for the cracks in the boron-fibre plastics and aluminium joined composite and in carbon-fibre reinforced plastics were calculated numerically.  相似文献   

19.
The dynamic stress intensity factors in a half-plane weakened by several finite moving cracks are investigated by employing the Fourier complex transformation. Stress analysis is performed in a half-plane containing a single dislocation and without dislocation. An exact solution in a closed form to the stress fields and displacement is ob- tained. The Galilean transformation is used to transform between coordinates connected to the cracks. The stress components are of the Cauchy singular kind at the location of dislocation and the point of application of the the influence of crack length and crack running force. Numerical examples demonstrate velocity on the stress intensity factor.  相似文献   

20.
研究多个纵向环形界面裂纹的P波散射问题。以裂纹面的位错密度函数为未知量,利用Fourier积分变换,将问题归结为第二类奇异积分方程,然后通过数值求解,获得裂纹尖端的动应力强度因子。最后给出了双裂纹动应力强度因子随入射波频率变化的关系曲线。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号