首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multi-domain boundary element method is used to compute the stress intensity factor of plane stress/plane strain crack problems with friction. The analysis is performed by using traction-singular quarter-point boundary elements on each side of the crack tips. The increment iteration is given. The technique is applied to some specific examples in order to show that the results will be with good accuracy.The Project 13 supported by National Natural Science Foundation of China.  相似文献   

2.
The authors recently theoretically studied crack kinking and opening from an initially closed crack (without friction) in some homogeneous medium. The same problem, but for an interface crack, is considered here. Comninou has shown that the asymptotic stress field prior to kinking is governed by a single, mode II stress intensity factor (SIF). Using this result, plus a homogeneity property of the problems of elastic fracture mechanics with unilateral contact envisaged, a change of scale, and two reasonable hypotheses, we establish the expression of the SIF at the tip of the small, open crack extension. It is shown that whatever the geometry of the external boundary and the crack and whatever the loading, these SIF depend solely upon the initial (mode II) SIF (in a linear way), the kink angle and Dundurs' parameters α and β. Using this result and Goldstein and Salganik's “principle of local symmetry” to predict the kink angle, one finds that it is independent of the loading but does depend upon Dundurs' parameters α and β. This contrasts with the case of an ordinary (initially closed) crack in some homogeneous medium, for which the kink angle was not only independent of the loading but an absolute constant. However, it is numerically found that the influence of the mismatch of elastic properties upon the kink angle is rather weak.  相似文献   

3.
4.
The initial kinking of a thin fracture process zone near the tip of an interface crack between two elastic media under plane strain is studied using the Wiener–Hopf method. The zone is modeled by the discontinuity plane of the normal displacement. This plane is assumed to emerge from the crack tip at an angle to the interface. The angle between the fracture process zone and the interface is determined from the condition that the potential energy is maximum in the zone. The dependence of the length of the zone and its angle on the external load and other parameters is analyzed in the cases of biaxial tension and pure shear. The results obtained are compared with theoretical and experimental data reported by other researchers  相似文献   

5.
The initial kinking of a thin fracture process zone near the crack tip under plane strain is studied using the Wiener-Hopf method. The crack is located at the interface between dissimilar elastic media. The fracture process zone is modeled by a straight line of normal displacement discontinuity emerging from the crack tip at an angle to the interface. The angle between the process zone and the interface is determined from the condition of strain energy maximum in the process zone. The dependences of the length and angle of the process zone on the external load and other parameters of the problem are studied. The results are compared with theoretical and experimental data obtained by other researchers __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 10, pp. 28–41, October 2007.  相似文献   

6.
The singularity behavior of a crack on the interface of two different media under dynamic load is investigated. By introducing a small region in which the crack faces make frictionless contact and making use of a kind of integral equations with moving boundaries, it is proved that there are only square-root singularities near the interface crack tips in case that a dynamic load acts on it. Numerical results show that the normal stress in the contact region remains negative. The results of the stress intensity factor and the length of the crack face contact region are given to illustrate the dynamic behavior of the interface crack.This work is supported by the National Natural Science Foundation of China.  相似文献   

7.
In this research a two dimensional displacement discontinuity method (which is a kind of indirect boundary element method) using higher order elements (i.e. a source element with a cubic variation of displacement discontinuities having four sub-elements) is used to obtain the displacement discontinuities along each boundary element. In this paper, three kinds of the higher order boundary elements are used: the ordinary elements, the kink elements and the special crack tip elements.The boundary collocation technique is used for the calculation of the displacement discontinuities at the center of each sub-elements. Again a special boundary collocation technique is used to treat the kinked source elements occur in the crack analysis. Considering the two source elements (each having four sub-elements) joined at a corner (kink point). The collocation points in the cubic element model which are outside of the kink point are moved to the crack kink then the displacement discontinuities on the left and right sides of the kink are calculated. The displacement discontinuities of the kink point are obtained by averaging the corresponding values of its left and right sides. The special crack tip elements are also treated by the boundary displacement collocation technique considering the singularity variation of the displacements and stresses near the crack tip. Some simple example problems are solved numerically by the proposed method. The numerical results are compared with the corresponding results obtained by the previous methods cited in the literature. This comparison shows a very good agreement between the results and verify the accuracy and validity of the proposed method.  相似文献   

8.
辐射阻尼在岩石基坑爆破开挖、边坡稳定、结构抗震以及结构-地基动力相互作用等实际工程问题中具有重要意义.为了模拟半平面问题的远域辐射阻尼,以时域边界元法(TD-BEM)理论为基础,根据应力波在弹性介质中的传播特性,在时域内提出了一种新的单元,即自适应半无限边界单元,专门用于离散远域半无限边界.该单元外侧节点是一个始终处于...  相似文献   

9.
Summary A method is presented to analyze elastodynamic stress intensity factors at the tip of a branch which emanates at velocity v and under an angle from the tip of a semi-infinite crack, when the faces of the semi-infinite crack are subjected to impulsive normal pressures. By taking advantage of self-similarity, the system of governing equations is reduced to a set of two Laplace's equations in half-plane regions. The solutions to these equations, which are coupled along the real axes of the half-planes, are obtained by using complex function theory together with summations over Chebychev polynomials. For small values of the Mode I and Mode II stress intensity factors and the corresponding flux of energy into the crack tip have been computed.  相似文献   

10.
Numerical solutions are presented for two-dimensional low Reynolds number flow in a rotating tank with stationary barriers. The boundary element method is employed, assuming straight panels and quadratic source distribution. The feasibility of repositioning the nodes as a way to minimize the error is explored. A stretching parameter places smaller elements near the re-entrant regions. Elementary error analysis shows uniform improvement in the solution with stretching. The changing eddy pattern for different numbers and sizes of the barriers is compared with experimental results.  相似文献   

11.
12.
Summary  Transient dislocation emission from a crack tip under dynamic mode III loading is analyzed. By taking into account the dynamic interaction between the crack and dislocation, the governing equation for the dislocation motion is derived under the quasi-steady assumption. The behavior of dislocation emission is explored in detail by solving this equation numerically. A critical initial speed can be determined, which must be exceeded by dislocations to escape from the crack tip. The dislocation emission process is found to be completed in such a short time period that the applied load may be approximately treated as constant during dislocation emission. Based on this fact, an asymptotic criterion for transient dislocation emission is developed, from which the critical initial speed can be evaluated. In the case that the dislocation is emitted from rest, we recover the quasi-static criterion of dislocation emission. Received 22 November 2000; accepted for publication 20 March 2001  相似文献   

13.
This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the integral transform, the problem is reduced to algebraic equations and can be solved with the collocation dots method in the Laplace domain. Time response of DSIF is calculated with the inverse Laplace integral transform. The results show that the mode Ⅱ DSIF increases with the shear relaxation parameter, shear module and Poisson ratio, while decreases with the swell relaxation parameter. Damage shielding only occurs at the initial stage of crack propagation. The singular index of crack tip is -0.5 and independent on the material parameters, damage conditions of materials, and time. The oscillatory index is controlled by viscoelastic material parameters.  相似文献   

14.
In this paper a group of stress functions has been proposed for the calculation of a crack emanating from a hole with different shape (including circular, elliptical, rectangular, or rhombic hole) by boundary collocation method. The calculation results show that they coincide very well with the existing solutions by other methods for a circular or elliptical hole with a crack in an infinite plate. At the smae time, a series of results for different holes in a finite plate has also been obtained in this paper. The proposed functions and calculation procedure can be used for a plate of a crack emanating from an arbitrary hole.  相似文献   

15.
A plane problem for a tunnel electrically permeable interface crack between two semi-infinite piezoelectric spaces is studied. A remote mechanical and electrical loading is applied. Elastic displacements and potential jumps as well as stresses and electrical displacement along the interface are presented using a sectionally holomorphic vector function. It is assumed that the interface crack includes zones of crack opening and frictionless contact. The problem is reduced to a combined Dirichlet–Riemann boundary value problem which is solved analytically. From the obtained solution, simple analytical expressions are derived for all mechanical and electrical characteristics at the interface. A quite simple transcendental equation, which determines the point of separation of open and close sections of the crack, is found. For the analysis of the obtained results, the main attention is devoted to the case of compressive-shear loading. The analytical analysis and numerical results show that, even if the applied normal stress is compressive, a certain crack opening zone exists for all considered loading values provided the shear field is present. It is found that the shear stress intensity factor at the closed crack tip and the energy release rates at the both crack tips depend very slightly on the magnitude of compressive loading.  相似文献   

16.
A novel experimental technique for measuring crack tipT-stress, and hence in-plane crack tip constraint, in elastic materials has been developed. The method exploits optimal positioning of stacked strain gage rosette near a mode I crack tip such that the influence of dominant singular strains is negated in order to determineT-stress accurately. The method is demonstrated for quasi-static and low-velocity impact loading conditions and two values of crack length to plate width ratios (a/W). By coupling this new method with the Dally-Sanford single strain gage method for measuring the mode I stress intensity factorK I , the crack tip biaxiality parameter is also measured experimentally. Complementary small strain, static and dynamic finite element simulations are carried out under plane stress conditions. Time histories ofK I andT-stress are computed by regression analysis of the displacement and stress fields, respectively. The experimental results are in good agreement with those obtained from numerical simulations. Preliminary data for critical values ofK I and β for dynamic experiments involving epoxy specimens are reported. Dynamic crack initiation toughness shows an increasing trend as β becomes more negative at higher impact velocities.  相似文献   

17.
The antiplane stress analysis of two anisotropic finite wedges with arbitrary radii and apex angles that are bonded together along a common edge is investigated. The wedge radial boundaries can be subjected to displacement-displacement boundary condi- tions, and the circular boundary of the wedge is free from any traction. The new finite complex transforms are employed to solve the problem. These finite complex transforms have complex analogies to both kinds of standard finite Mellin transforms. The traction free condition on the crack faces is expressed as a singular integral equation by using the exact analytical method. The explicit terms for the strength of singularity are extracted, showing the dependence of the order of the stress singularity on the wedge angle, material constants, and boundary conditions. A numerical method is used for solving the resul- tant singular integral equations. The displacement boundary condition may be a general term of the Taylor series expansion for the displacement prescribed on the radial edge of the wedge. Thus, the analysis of every kind of displacement boundary conditions can be obtained by the achieved results from the foregoing general displacement boundary condition. The obtained stress intensity factors (SIFs) at the crack tips are plotted and compared with those obtained by the finite element analysis (FEA).  相似文献   

18.
基于有限断裂法和比例边界有限元法提出了一种裂缝开裂过程模拟的数值模型。采用基于有限断裂法的混合断裂准则作为起裂及扩展的判断标准,当最大环向应力和能量释放率同时达到其临界值时,裂缝扩展。结合多边形比例边界有限元法,可以半解析地求解裂尖区域附近的应力场和位移场,在裂尖附近无需富集即可获得高精度的解。计算能量释放率时,只需将裂尖多边形内的裂尖位置局部调整,无需改变整体网格的分布,网格重剖分的工作量降至最少。裂缝扩展步长通过混合断裂准则确定,避免了人为假设的随意性,并可以实现裂缝变步长扩展的模拟,更符合实际情况。通过对四点剪切梁的复合型裂缝扩展过程的模拟,对本文模型进行了验证,并应用于重力坝模型的裂缝扩展模拟,计算结果表明,本文提出的模型简单易行且精度较高。  相似文献   

19.
在Navier-Stokes方程和k-ω湍流模型的基础上,利用流线迎风有限元方法结合ALE动网格技术对亚临界雷诺数下的圆柱受迫振动问题开展了数值模拟研究。本文的数值模型成功模拟了Re=5000条件下,圆柱发生受迫振动时尾迹区内的2S,2P和P+S尾流模式;对Re=10000情况下,无量纲振幅分别为0.3,0.4,0.5的圆柱受迫振动问题开展了数值模拟,分析了给定振幅条件下圆柱受力随振动频率的变化关系以及受迫振动的锁定区间。以上数值计算结果与Gopalkrishnan (1993)的实验结果基本符合。研究结果表明,二维数值模型能够基本正确地反映出圆柱发生受迫振动时的涡激振动特性以及有关的受力变化趋势,为今后进一步开展三维数值分析工作奠定了基础。  相似文献   

20.
模拟裂纹扩展的一种有限元局部动态子划分方法   总被引:1,自引:0,他引:1  
提出了一种有限元子划分结合子结构的方法来模拟裂纹扩展问题。提出的方法中,将单元分为三类:被裂纹贯穿的单元,包含裂尖的单元和常规单元。对前两类单元进行子划分,每个单元的归类随裂纹的扩展而动态变化。覆盖一条裂纹的前两类单元子划分后构成一个子结构,子结构也是动态的,跟随裂纹的扩展而逐步扩大。本文的方法可以使裂纹沿任意路径扩展而不受初始网格的限制,裂纹扩展后无需对结构整体的网格重划分,结构整体分析的总自由度也不变。用该方法计算无限大平面中心裂纹的应力强度因子,模拟三点弯梁跨中裂纹的扩展,验证了计算精度,并进一步用该方法模拟了非均质材料中裂纹的扩展,考核了对复杂裂纹扩展问题的适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号