首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IntroductionForgeomaterialssuchasrockandconcrete,thefrictionalslidingalongmicrocracksurfacesisassociatedwiththeplasticitymodeldescribedbytheMohr_Coulombtheory ;moreovercrackpropagationcorrespondstodamagegrowth .Thecouplingofdamageandplasticityofaphenom…  相似文献   

2.
3.
Three small deformation plasticity models taking into account isotropic damage effects are presented and discussed. The models are formulated in the context of irreversible thermody-namics and the internal state variable theory. They exhibit nonlinear isotropic and nonlinear kinematic hardening. The aim of the paper is first to give a comparative study of the three models with reference to homogeneous and inhomogeneous deformations by using a general damage law. Secondly, and this is the main objective of the paper, we generalize the constitutive models to finite deformations by applying a thermodynamical framework based on the Mandel stress tensor. The responses of the obtained finite deformation models are then discussed for loading processes with homogeneous deformations.  相似文献   

4.
This work gives the thermodynamically consistent theoretical formulations and the numerical implementation of a plasticity model fully coupled with damage. The formulation of the elasto-plastic-damage behavior of materials is introduced here within a framework that uses functional forms of hardening internal state variables in both damage and plasticity. The damage is introduced through a damage mechanics framework and utilizes an anisotropic damage measure to quantify the reduction of the material stiffness. In deriving the constitutive model, a local yield surface is used to determine the occurrence of plasticity and a local damage surface is used to determine the occurrence of damage. Isotropic hardening and kinematic hardening are incorporated as state variables to describe the change of the yield surface. Additionally, a damage isotropic hardening is incorporated as a state variable to describe the change of the damage surface. The hardening conjugate forces (stress-like terms) are general nonlinear functions of their corresponding hardening state variables (strain-like terms) and can be defined based on the desired material behavior. Various exponential and power law functional forms are studied in this formulation. The paper discusses the general concept of using such functional forms. however, it does not address the relevant appropriateness of certain forms to solve different problems. The proposed work introduces a strong coupling between damage and plasticity by utilizing damage and plasticity flow rules that are dependent on both the plastic and damage potentials. However, in addition to that the coupling is further enhanced through the use of the functional forms of the hardening variables introduced in this formulation.The use of this formulation in solving boundary value problems will be presented in future work. The fully implicit backward Euler scheme is developed for this model to be solved in a Newton–Raphson solution procedure.  相似文献   

5.
In this contribution various aspects of an anisotropic damage model coupled to plasticity are considered. The model is formulated within the thermodynamic framework and implements a strong coupling between plasticity and damage. The constitutive equations for the damaged material are written according to the principle of strain energy equivalence between the virgin material and the damaged material. The damaged material is modeled using the constitutive laws of the effective undamaged material in which the nominal stresses are replaced by the effective stresses. The model considers different interaction mechanisms between damage and plasticity defects in such a way that two-isotropic and two-kinematic hardening evolution equations are derived, one of each for the plasticity and the other for the damage. An additive decomposition of the total strain into elastic and inelastic parts is adopted in this work. The elastic part is further decomposed into two portions, one is due to the elastic distortion of the material grains and the other is due to the crack closure and void contraction. The inelastic part is also decomposed into two portions, one is due to nucleation and propagation of dislocations and the other is due to the lack of crack closure and void contraction. Uniaxial tension tests with unloadings have been used to investigate the damage growth in high strength steel. A good agreement between the experimental results and the model is obtained.  相似文献   

6.
The mechanism of lamellar fragmentation in the semi-crystalline polymers with spherulitic structure, is observed at the beginning of plastic flow. It causes significant damage. This elementary mechanism is considered here as a result of plastic deformation coupled with damage, in the framework of generalized standard materials. The simplicity and the efficiency of the proposed approach come from the fact that the semi-crystalline polymers are considered as a macromolecular network bridled by intra-lamellar cohesive forces. Tensile tests and relaxation tests demonstrate the usefulness of a damage–plasticity coupled model.  相似文献   

7.
The paper presents a constitutive framework for solids with dissipative micro-structures based on compact variational statements. It develops incremental minimization and saddle point principles for a class of gradient-type dissipative materials which incorporate micro-structural fields (micro-displacements, order parameters, or generalized internal variables), whose gradients enter the energy storage and dissipation functions. In contrast to classical local continuum approaches to inelastic solids based on locally evolving internal variables, these global micro-structural fields are governed by additional balance equations including micro-structural boundary conditions. They describe changes of the substructure of the material which evolve relatively to the material as a whole. Typical examples are theories of phase field evolution, gradient damage, or strain gradient plasticity. Such models incorporate non-local effects based on length scales, which reflect properties of the material micro-structure. We outline a unified framework for the broad class of first-order gradient-type standard dissipative solids. Particular emphasis is put on alternative multi-field representations, where both the microstructural variable itself as well as its dual driving force are present. These three-field settings are suitable for models with threshold- or yield-functions formulated in the space of the driving forces. It is shown that the coupled macro- and micro-balances follow in a natural way as the Euler equations of minimization and saddle point principles, which are based on properly defined incremental potentials. These multi-field potential functionals are outlined in both a continuous rate formulation and a time-space-discrete incremental setting. The inherent symmetry of the proposed multi-field formulations is an attractive feature with regard to their numerical implementation. The unified character of the framework is demonstrated by a spectrum of model problems, which covers phase field models and formulations of gradient damage and plasticity.  相似文献   

8.
混凝土材料冲击特性的研究   总被引:5,自引:0,他引:5  
宁建国  商霖  孙远翔 《力学学报》2006,38(2):199-208
基于混凝土材料强冲击加载下的试验研究,提出了两种损伤型动态本构模型: 损伤型黏弹性本构模型和损伤与塑性耦合的本构模型. 通过模型计算结果与冲击试验结果的 比较可发现,随着冲击速度的提高,混凝土材料内部产生了显著的塑性变形,由此 损伤型黏弹性本构模型的应用就存在一些不足. 而损伤与塑性耦合的本构模型由于考虑了裂 纹扩展引起的材料强度和刚度的弱化,以及微空洞缺陷塌陷引起的塑性变形,因而能更好地 用于模拟强冲击载荷作用下混凝土材料的冲击响应特性.  相似文献   

9.
针对准脆性材料的非线性特征:强度软化和刚度退化、单边效应、侧限强化和拉压软化、不可恢复变形、剪胀及非弹性体胀,在热动力学框架内,建立了准脆性材料的弹塑性与各向异性损伤耦合的本构关系。对准脆性材料的变形机理和损伤诱发的各向异性进行了诠释,并给出了损伤构形和有效构形中各物理量之间的关系。在有效应力空间内,建立了塑性屈服准则、拉压不同的塑性随动强化法则和各向同性强化法则。在损伤构形中,采用应变能释放率,建立了拉压损伤准则、拉压不同的损伤随动强化法则和各向同性强化法则。基于塑性屈服准则和损伤准则,构建了塑性势泛函和损伤势泛函,并由正交性法则,给出了塑性和损伤强化效应内变量的演化规律,同时,联立塑性屈服面和损伤加载面,给出了塑性流动和损伤演化内变量的演化法则。将损伤力学和塑性力学结合起来,建立了应变驱动的应力-应变增量本构关系,给出了本构数值积分的要点。以单轴加载-卸载往复试验识别和校准了本构材料常数,并对单轴单调试验、单轴加载-卸载往复试验、二轴受压、二轴拉压试验和三轴受压试验进行了预测,并与试验结果作了比较,结果表明,所建本构模型对准脆性材料的非线性材料性能有良好的预测能力。  相似文献   

10.
It is generally accepted that the apparent behavior of geo-materials is the representation of the average micro-mechanical behavior of its constituents. Constitutive models that do not incorporate these micro-mechanical features in calibrating the material parameters cannot address various material localization features in large strain problems such as shear bands and slope failures, etc. In the absence of such micro-mechanical features the calibration of such models may be incorrect.A rigorous formulation that incorporates these micro-mechanical based mechanisms into the general behavior of the saturated soils is presented here. The plastic rotation of particles, the interaction of particles, the rate dependency, the damage, and the coupling of particles with pore fluid pressure are incorporated through the plastic spin, the gradient theory, the visco-plasticity, the damage theory, and the coupled theory of mixtures, respectively. The link between the micro-mechanical mechanisms and the macro-mechanical behavior is made through the use of RVE (representative volume element). As a result, a full formulation for the micro-mechanics implemented continuum plasticity for saturated soils is presented here.  相似文献   

11.
A constitutive model for interface debonding is proposed which is able to account for mixed-mode coupled debonding and plasticity, as well as further coupling between debonding and friction including post-delamination friction. The work is an extension of a previous model which focuses on the coupling between mixed-mode delamination and plasticity. By distinguishing the interface into two parts, a cracked one where friction can occur and an integral one where further damage takes place, the coupling between frictional dissipation and energy loss through damage is seamlessly achieved. A simple framework for coupled dissipative processes is utilised to derive a single yield function which accurately captures the evolution of interface strength with increasing damage, for both tensile and compressive regimes. The new material model is implemented as a user-defined interface element in the commercial package ABAQUS and is used to predict delamination under compressive loads in several test cases.  相似文献   

12.
A material model for concrete is proposed here within the framework of a thermodynamically consistent elasto-plasticity–damage theory. Two anisotropic damage tensors and two damage criteria are adopted to describe the distinctive degradation of the mechanical properties of concrete under tensile and compressive loadings. The total stress tensor is decomposed into tensile and compressive components in order to accommodate the need for the above mentioned damage tensors. The plasticity yield criterion presented in this work accounts for the spectral decomposition of the stress tensor and allows multiple hardening rules to be used. This plastic yield criterion is used simultaneously with the damage criteria to simulate the physical behavior of concrete. Non-associative flow rule for the plastic strains is used to account for the dilatancy of concrete as a frictional material. The thermodynamic Helmholtz free energy concept is used to consistently derive dissipation potentials for damage and plasticity and to allow evolution laws for different hardening parameters. The evolution of the two damage tensors is accounted for through the use of fracture-energy-based continuum damage mechanics. An expression is derived for the damage–elasto-plastic tangent operator. The theoretical framework of the model is described here while the implementation of this model will be discussed in a subsequent paper.  相似文献   

13.
A continuum damage framework is developed and coupled with an existing crystal plasticity framework, to model failure initiation in irradiated bcc polycrystalline materials at intermediate temperatures. Constitutive equations for vacancy generation due to inelastic deformation, void nucleation due to vacancy condensation, and diffusion-assisted void growth are developed. The framework is used to simulate failure initiation at dislocation channel interfaces and grain boundaries ahead of a sharp notch. Evolution of the microstructure is considered in terms of the evolution of inelastic deformation, vacancy concentration, and void number density and radius. Evolution of the damage, i.e., volume fraction of the voids, is studied as a function of applied deformation. Effects of strain rate and temperature on failure initiation are also studied. The framework is used to compute the fracture toughness of irradiated specimens for various loading histories and notch geometries. Crack growth resistance of the irradiated specimens are computed and compared to that of virgin specimens. Results are compared to available experimental data.  相似文献   

14.
Internal state variable rate equations are cast in a continuum framework to model void nucleation, growth, and coalescence in a cast Al–Si–Mg aluminum alloy. The kinematics and constitutive relations for damage resulting from void nucleation, growth, and coalescence are discussed. Because damage evolution is intimately coupled with the stress state, internal state variable hardening rate equations are developed to distinguish between compression, tension, and torsion straining conditions. The scalar isotropic hardening equation and second rank tensorial kinematic hardening equation from the Bammann–Chiesa–Johnson (BCJ) Plasticity model are modified to account for hardening rate differences under tension, compression, and torsion. A method for determining the material constants for the plasticity and damage equations is presented. Parameter determination for the proposed phenomenological nucleation rate equation, motivated from fracture mechanics and microscale physical observations, involves counting nucleation sites as a function of strain from optical micrographs. Although different void growth models can be included, the McClintock void growth model is used in this study. A coalescence model is also introduced. The damage framework is then evaluated with respect to experimental tensile data of notched Al–Si–Mg cast aluminum alloy specimens. Finite element results employing the damage framework are shown to illustrate its usefulness.  相似文献   

15.
There exist two frameworks of strain gradient plasticity theories to model size effects observed at the micron and sub-micron scales in experiments. The first framework involves the higher-order stress and therefore requires extra boundary conditions, such as the theory of mechanism-based strain gradient (MSG) plasticity [J Mech Phys Solids 47 (1999) 1239; J Mech Phys Solids 48 (2000) 99; J Mater Res 15 (2000) 1786] established from the Taylor dislocation model. The other framework does not involve the higher-order stress, and the strain gradient effect come into play via the incremental plastic moduli. A conventional theory of mechanism-based strain gradient plasticity is established in this paper. It is also based on the Taylor dislocation model, but it does not involve the higher-order stress and therefore falls into the second strain gradient plasticity framework that preserves the structure of conventional plasticity theories. The plastic strain gradient appears only in the constitutive model, and the equilibrium equations and boundary conditions are the same as the conventional continuum theories. It is shown that the difference between this theory and the higher-order MSG plasticity theory based on the same dislocation model is only significant within a thin boundary layer of the solid.  相似文献   

16.
In this paper, we present several hysteretic models formulated using an energy approach. In each case, the behavior of the model is completely described by specifying two scalar-valued functions—a stored energy function and a dissipation potential. Consequently, different types of mathematical programs arise in incremental non-linear analyses involving these models. It is relatively well-known how classical plasticity models can be described using an energy approach, and lead to mathematical programming problems. However, in this paper, we demonstrate that plasticity models with non-associated flow rules, softening plasticity or strength degradation models, and damage or stiffness degradation models can be represented in this framework as well. The energy approach serves to unify formulation and implementation of a broad class of hysteretic models. In addition, it helps motivate regularization strategies needed in optimization and inverse problems. The types of models considered in this paper are ones commonly applied in earthquake engineering. MATLAB implementations are included as online supplemental data with this paper to illustrate the conceptual simplicity of implementing models formulated using this approach.  相似文献   

17.
Combinations of gradient plasticity with scalar damage and of gradient damage with isotropic plasticity are proposed and implemented within a consistently linearized format. Both constitutive models incorporate a Laplacian of a strain measure and an internal length parameter associated with it, which makes them suitable for localization analysis.The theories are used for finite element simulations of localization in a one-dimensional model problem. The physical relevance of coupling hardening/softening plasticity with damage governed by different damage evolution functions is discussed. The sensitivity of the results with respect to the discretization and to some model parameters is analyzed. The model which combines gradient-damage with hardening plasticity is used to predict fracture mechanisms in a Compact Tension test.  相似文献   

18.
The extension of classical shakedown theorems for hardening plasticity is interesting from both theoretical and practical aspects of the theory of plasticity. This problem has been much discussed in the literature. In particular, the model of generalized standard materials gives a convenient framework to derive appropriate results for common models of plasticity with strain-hardening. This paper gives a comprehensive presentation of the subject, in particular, on general results which can be obtained in this framework. The extension of the static shakedown theorem to hardening plasticity is presented at first. It leads by min-max duality to the definition of dual static and kinematic safety coefficients in hardening plasticity. Dual static and kinematic approaches are discussed for common models of isotropic hardening of limited or unlimited kinematic hardening. The kinematic approach also suggests for these models the introduction of a relaxed kinematic coefficient following a method due to Koiter. Some models for soils such as the Cam-clay model are discussed in the same spirit for applications in geomechanics. In particular, new appropriate results concerning the variational expressions of the dual kinematic coefficients are obtained.  相似文献   

19.
We develop a model framework for anisotropic damage coupled to crystal (visco)plasticity, which is based on the concept of a fictitious (undamaged) configuration. The theoretical setting is that of finite strains, which is natural when studying crystal inelasticity even in the case of actual small strains. It turns out that the evolution law for damage, which reflects degradation in the slip planes and which is the key new relation, bears strong resemblance with the inelastic flow rule. Some numerical results showing qualitatively the anisotropic development of damage concludes the paper.  相似文献   

20.
王增会  李锡夔 《力学学报》2018,50(2):284-296
本文在二阶计算均匀化框架下提出了颗粒材料损伤--愈合与塑性的多尺度表征方法. 颗粒材料结构在宏观尺度模型化为梯度Cosserat连续体,在其有限元网格的每个积分点处定义具有离散颗粒介观结构的表征元. 建立了表征元离散颗粒系统的非线性增量本构关系. 表征元周边介质作用于表征元边界颗粒的增量力与增量力偶矩以表征元边界颗粒的增量线位移与增量转动角位移、当前变形状态下表征元离散介观结构弹性刚度、以及凝聚到表征元边界颗粒的增量耗散摩擦力表示. 基于平均场理论与Hill定理,导出了基于介观力学信息的梯度Cosserat连续体增量非线性本构关系. 在等温热动力学框架下定义了表征颗粒材料各向异性损伤--愈合和塑性的损伤、愈合张量因子与综合损伤、愈合效应的净损伤张量因子和塑性应变. 此外,定义了损伤和塑性耗散能密度与愈合能密度,以定量比较材料损伤、愈合、塑性对材料失效的效应. 应变局部化数值例题结果显示了所建议的颗粒材料损伤--愈合--塑性表征方法的有效性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号