首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a Q-switched microchip laser emitting 1064-nm pulses as short as 100 ps synchronized to a cavity dumped femtosecond laser emitting 800-nm pulses as short as 80 fs. The synchronization is achieved by presaturating the saturable absorber of the microchip laser with femtosecond pulses even though both lasers emit at widely separated wavelengths. The mean timing jitter is 40 ps and thus considerably shorter than the pulse duration of the microchip laser.  相似文献   

2.
A diode-pumped passively mode-locked Nd: CTGG disordered crystal laser has been experimentally demonstrated for the first time to our knowledge. Mode locked with a semiconductor saturable absorber mirror, the laser generated 5.2 ps pulses at a repetition rate of 88 MHz. After intracavity dispersion compensation, the mode-locked pulses were shortened to 4.3 ps. Multiple emission wavelengths of the Nd:CTGG laser could be synchronously mode locked under dispersion compensation.  相似文献   

3.
A quantum-dot-based saturable absorber has been demonstrated to initiate the generation of femtosecond pulses from a passively mode-locked solid-state laser. Control and tuning of the pulse duration from 58 ps to 158 fs was achieved. The 158 fs transform-limited pulses at 1280 nm are the shortest pulses that were produced from the Cr:forsterite laser passively mode locked by an InAs/InGaAs quantum-dot semiconductor saturable absorber mirror.  相似文献   

4.
Fundamental mode-locking is achieved in a 1.036 GHz cavity using a semiconductor quantum dot saturable absorber mirror with a fast relaxation time component of down to 550 fs. The dispersive cavity delivers 1.7 ps wide pulses with spectra supporting sub-picosecond pulse durations and an M² of 1.3. An average output power of up to 339 mW at wavelengths around 1,032 nm is achieved and the saturable absorber’s damage threshold is identified as a limitation for further power scaling.  相似文献   

5.
We have developed a diode-pumped passively mode-locked Nd3+:CLTGG laser operated at 1059 and 1061 nm with a semiconductor saturable absorber mirror (SESAM). The relative intensity of the two spectrum wavelengths is adjustable, allowing asynchronous and synchronous generation of the dual-wavelength pulses. In synchronous mode-locking regime, a total average output power of 383 mW was obtained with pulse duration of 3.5 ps and repetition rate of 42 MHz. The two spectral bands of 1059 and 1061 nm had the same intensities and areas, indicating 1:1 for the pulse energy ratio. It is desirable for efficiently generating a terahertz wave by difference-frequency generation.  相似文献   

6.
We present passively Q-switched microchip lasers with items bonded by spin-on-glass glue. Passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser medium is a Nd:YVO(4) crystal. These lasers generate pulse peak powers up to 20 kW at a pulse duration as short as 50 ps and pulse repetition rates of 166 kHz. At 1064 nm, a linear polarized transversal and longitudinal single-mode beam is emitted. To the best of our knowledge, these are the shortest pulses in the 1 microJ energy range ever obtained with passively Q-switched microchip lasers. The quasi-monolithic setup ensures stable and reliable performance.  相似文献   

7.
Passive mode-locking of a diode-pumped Nd:BaY2F8 (Nd:BaYF) was achieved on four lines in the range 1040–1074 nm, employing a semiconductor saturable absorber mirror (SAM). Nearly Fourier-limited pulses with durations of 2.6 to 7.2 ps and output power ≈50 mW were generated in a dispersion-controlled resonator using a single prism for wavelength selection, tuning and dispersion management.  相似文献   

8.
Near-transform-limited subpicosecond pulses at 1.56 μm were generated from an optically pumped InP-based vertical-external-cavity surface-emitting laser (VECSEL) passively mode-locked at 2 GHz repetition rate with a fast InGaAsNSb/GaAs semiconductor saturable absorber mirror (SESAM). The SESAM microcavity resonance was adjusted via a selective etching of phase layers specifically designed to control the magnitude of both the modulation depth and the intracavity group delay dispersion of the SESAM. Using the same VECSEL chip, we observed that the mode-locked pulse duration could be reduced from several picoseconds to less than 1 ps with a detuned resonant SESAM.  相似文献   

9.
We show that it is possible to eliminate group delay dispersion over wide bandwidths in low-finesse, resonant saturable absorber mirrors, whilst maintaining a low saturation fluence and a high modulation depth. By modelling the mirror structure we demonstrate that these properties can be produced by capping a resonant device with a single dielectric layer of carefully selected refractive index. We show that a specially capped dispersionless structure minimises the temporal broadening of femtosecond pulses reflected from the mirror. We compare this device against uncapped-resonant and anti-resonant structures. The superior performance of the capped, dispersionless device was verified experimentally by comparing resonant, anti-resonant and dispersionless quantum-dot (QD) saturable absorber mirrors incorporated into a Cr4+:forsterite laser system. We found that a minimum pulse duration of 86 fs could be achieved for the dispersionless structure at 1290 nm with an output power of 55 mW compared to 122 fs in an anti-resonant structure and several-picosecond pulses for a resonant structure.  相似文献   

10.
We report a highly efficient and high power self-starting femtosecond Cr:forsterite laser pumped by a 1064-nm Yb doped fibre laser. Five chirped mirrors are used to compensate for the intra-cavity group-delay dispersion, and the mode-locking is initiated by a semiconductor saturable absorber mirror (SESAM). Under pump power of 7.9 W, stable femtosecond laser pulses with average power of 760mW are obtained, yielding a pump power slope efficiency of 12.3%. The measured pulse duration and spectral bandwidth (FWHM) are 46 fs and 45 nm; the repetition rate is 82 MHz.  相似文献   

11.
Passive mode-locking of a diode-pumped Nd:CLNGG laser was demonstrated for the first time to our knowledge. The laser operated at a central wavelength of 1061.2 nm with a maximum average output power of 101 mW. The mode-locked pulses have pulse duration of 2.0 ps, a spectral bandwidth of 1.2 nm and a repetition rate of 88.4 MHz. The mode locking of the laser was enabled by a semiconductor saturable absorber mirror (SESAM).  相似文献   

12.
With a reflective single-walled carbon nanotube as the saturable absorber, a laser diode-pumped passively mode-locked Nd:YVO4 laser at 1064 nm was realized for the first time. The pulse duration of 12 ps was produced with a repetition rate of 83.7 MHz. The peak power and the single pulse energy of the mode-locking laser were 1.28 kW and 15.4 nJ, respectively.  相似文献   

13.
报道了2μm波段的全光纤保偏锁模掺铥光纤激光器,通过在法布里-珀罗(F-P)腔内加入半导体可饱和吸收镜做为被动锁模器件,采用主振-放大构型,获得了最高输出平均功率为1.08W,重复频率为10.24MHz,脉冲宽度为15.24ps,中心波长为2054.68nm,光谱宽度约为0.3nm的2μm线偏振激光脉冲输出,激光脉冲的消光比为24.17dB。  相似文献   

14.
We have demonstrated the stable mode-locked Nd:GdVO4 laser operating on the 4F3/2-4I9/2 transition at 912 nm. With a four-mirror-folded cavity and a semiconductor saturable absorber mirror for passive mode-locking, we have gained 6.5 ps laser pulses at a repetition rate of 178 MHz. The laser is diode-end-pumped, and the total output power from the out coupler is 128 mw at an incident pump power of 19.7 W.  相似文献   

15.
Passive mode-locking of a diode pumped Yb-doped GdVO4 crystal laser was demonstrated for the first time to our knowledge. The laser was mode-locked at the wavelength of 1019.1 nm and had an average output power of 1.01 W. The mode-locked pulse duration was 3.1 ps. The laser was end-pumped by a high-power fiber pigtailed laser diode bar and the mode-locking was enabled by a semiconductor saturable absorber mirror (SESAM).  相似文献   

16.
Xie GQ  Tang DY  Luo H  Zhang HJ  Yu HH  Wang JY  Tao XT  Jiang MH  Qian LJ 《Optics letters》2008,33(16):1872-1874
We have experimentally demonstrated a dual-wavelength synchronously mode-locked Nd:CNGG laser based on the semiconductor saturable absorber mirror technique. Mode locking was achieved simultaneously on two gain bands of the crystal that have a central wavelength separation of 2.4 nm. The fundamental mode-locked pulse train has a repetition rate of 88 MHz and pulse duration of 5 ps, with an average output power of approximately 90 mW. Autocorrelation measurements show that each of the synchronously mode-locked pulses consists of a train of quasi-periodic beat pulses with a 660 fs pulse width and a 0.63 THz repetition rate.  相似文献   

17.
We report the operation of a bidirectional picosecond pulsed ring Nd:YVO4 laser based on a low-temperaturegrown semiconductor saturable absorber mirror. Except for the laser crystal, the six-mirror ring laser cavity has no intra-cavity elements such as focusing lens or mirror. The bidirectional mode locked pluses are obtained at the repetition rate of 117.5 MHz, pulse duration of 81 ps, power of 2 × 200 mW.  相似文献   

18.
The wavelength-tunable rectangular mode-locking operation is demonstrated in an all-fiber laser based on semiconductor saturable absorber mirror.As the dissipative soiiton resonance signature,the puJse duration varies from 580 ps to 2.1 ns as a function of the increasing pump power.Correspondingly,the maximum pulse energy is9.11 nJ.Moreover,it is found that the wavelength tunable operation with a range of approximately 10 nm could be obtained by properly adjusting the polarization controllers.The characteristics of the rectangular pulses at different wavelengths are similar to each other.The demonstration of the wavelength tunable rectangular pulses would be beneficial to some applications for many fields such as spectroscopy and sensing research.  相似文献   

19.
We have demonstrated passively Q-switched mode-locked all-solid-state Nd:YLF laser with an uncoated GaAs wafer as saturable absorber and output mirror simultaneously. Q-switched mode-locking pulses laser with about 100% modulation depth were obtained. The average output power is 890 mW at the incident pump power of 5.76 W, corresponding to an optical slop efficiency of 20%. The temporal duration of mode-locked pulses was about 21 ps. At the Q-switched repetition rate of 30 kHz, the energy and peak power of a single pulse near the maximum of the Q-switched envelope was estimated to be about 1.6 μJ and 76 kW.  相似文献   

20.
曹士英  朱月  柴路  王清月  张志刚 《物理学报》2009,58(9):6269-6272
采用Nd∶Gd0.1Y0.9VO4晶体作为增益介质和Z形腔结构,分析比较了腔内加入自行设计的镀和不镀高反膜的半导体可饱和吸收镜(SESAM)对激光锁模的影响.在腔内加入镀膜SESAM后,激光锁模阈值由1.69W下降为1.45W,并且锁模更稳定.在2W抽运功率下,在1064nm中心波长处获得了双端250mW的连续锁模输出,光光转换效率为12.5%,重复频率为142.25MHz. 关键词: 0.1Y0.9VO4激光器')" href="#">Nd∶Gd0.1Y0.9VO4激光器 半导体可饱和吸收镜 连续锁模  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号