首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用全浮区模型数值研究了旋转磁场作用下熔区内热毛细对流流动特性,分析了磁场强度对流场及浓度场的影响.研究发现,无磁场时,熔体内杂质浓度场和流场呈现三涡胞对称振荡特征;温度场主要由扩散作用决定,呈对称分布.旋转磁场作用下,Ma数基本保持不变.当磁场强度B0≤1 mT时,熔体内杂质浓度场和流场与无磁场时结构类似,但旋转磁场的搅拌作用使得熔体内周期性振荡提前出现,且当旋转磁场产生的洛伦兹力相对较大时,表面张力产生的三维振荡对流得到很好地抑制.B0=5 mT时,周向波动被完全抑制,熔区内流场和浓度场呈二维轴对称分布.旋转磁场对熔体流动产生的轴向抑制作用和周向搅拌作用,都有助于熔体流动的稳定性、浓度分布以及温度分布的均匀性,从而有利于高质量晶体的生长.  相似文献   

2.
Melt stirring effect of a weak magnetic field for the natural convection of liquid metal in an electrically adiabatic cubic enclosure heated from one vertical wall and cooled from an opposing wall was studied by a fully transient three-dimensional numerical analyses and the reasoning for melt stirring effect was clarified from the numerical results. Similar techniques were applied for the melt convection in a cylindrical Czochralski crystal growing crucible with an application of a vertical magnetic field. In a static crucible, central fluid column rotated in a magnetic field and in a rotating crucible, central fluid column did not rotate in a magnetic field. These peculiar characteristics could have been explained due to the Lorentz force.  相似文献   

3.
This paper presents results of experiments on the oscillatory convection of mercury in a Czochralski configuration with cusp magnetic field. Temperature fluctuation measurements are carried out to determine the critical Rayleigh number for the onset of time dependent natural convection. The effects of a cusp magnetic field on the supercritical natural convection coupled with rotation of crystal disk are investigated. In the presence of a rotating flow it is found that a cusp magnetic field can induce a new long wave instability and can amplify the temperature fluctuation depending on the magnitude of the relevant flow similarity parameters and the melt aspect ratios. A flow regime diagram for the amplification and damping of the temperature fluctuations is presented to provide an experimental data base for finding optimum growth conditions in the cusp magnetic field Czochralski process.  相似文献   

4.
The flow in an oxide melt such as LiNbO, and TiO2 in a high magnetic field was observed by using magnetic-field-applied Czochralski equipment for oxide crystals. It was found that the flows in oxides melts were very much different from these in a semiconductor melt. The single crystals of TiO2 were grown in a magnetic field by using this equipment.  相似文献   

5.
Applying a rotating magnetic field to an electrically conducting liquid, a Lorentz force is induced which generates a melt rotation of a certain angular velocity. A cylindrical gallium melt (aspect ratio 2.5) has been used as a model liquid. The melt has been heated from the bottom (Ra = 106) or from the top (Ra = −106) and the resulting temperature fluctuations in the melt have been measured in dependence on the rotating field strength (Bmax = 30 mT). In the case of the unstable gradient 0.8 mT are sufficient to dominate the buoyancy driven convection and to reduce the amplitude of the buoyancy caused temperature oscillations for more than one order of magnitude. At the same time, the fluctuation frequency increases with the field strength. In the case of the stabilizing temperature gradient, low amplitude/high frequency temperature fluctuations are generated by the rotating magnetic field, indicating the transition to a time-dependent flow. In both cases we see an increase of the convective heat transport for magnetic inductions higher than approximately 5 m T. Applying the rotating magnetic field to the Bridgman growth of gallium doped germanium, the same behavior can be seen: Growing with a top-seeded arrangement, the intensity of the dopant striations is decreased and their frequency is increased. Growing with a bottom-seeded arrangement, the interface curvature changes from concave to convex and the flow becomes time-dependent.  相似文献   

6.
Application of rotating magnetic fields in Czochralski crystal growth   总被引:1,自引:0,他引:1  
The physical principles of electromagnetic stirring with a rotating magnetic field are explained and a mathematical model to calculate the electromagnetic volume force, the fluid flow and the transport of heat and solutes is outlined. For the electromagnetic volume force and for the order of magnitude of the flow velocities approximative analytical expressions are given. A high flexibility in configuring the volume force in order to achieve a desired flow distribution is obtained by multi-frequency stirring that is by superposition of two or several magnetic fields with different frequencies and/or sense of rotation. Results of experimental investigation and mathematical simulation of multi-frequency stirring are given. Numerical simulation of the fluid flow, the temperature and the oxygen distribution in a Czochralski process crucible was performed including the effect of single mode and multi-frequency stirring. The results indicate that electromagnetic stirring should offer large potentials for the optimization of the flow configuration in a Czochralski process crucible. Finally examples from literature of practical application of rotating magnetic fields in crystal growth are presented.  相似文献   

7.
The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one.  相似文献   

8.
Rotating or alternating magnetic fields are widely used in the industrial steel casting process or in metallurgical manufacturing. For the growth of single crystals, these techniques attracted a rapidly increasing attention within the last years: a well defined melt flow leads to a more homogeneous temperature and concentration distribution in the melt and consequently improves the growth process. Rotating magnetic fields (RMF) might be used instead of crucible and/or crystal rotation avoiding mechanically induced disturbances or might be added to conventional rotation mechanisms to gain a further flow control parameter. Compared to static magnetic fields, rotating ones are distinguished by a much lower energy consumption and technical effort. Furthermore, there are no reports on detrimental effects such as the generation of thermoelectromagnetic convection or coring effects in the grown crystals. One advantage of rotating magnetic fields is the possibility to apply them even to melts with a rather low electrical conductivity like e.g. aqueous solutions. High flow velocities are already generated with moderate fields. Therefore the field strength has to be adjusted with care because otherwise undesirable Taylor vortices might be induced. In the last years, the potential of rotating magnetic fields for crystal growth processes was demonstrated for model arrangements using e.g. gallium or mercury as a test liquid as well as for a variety of growth techniques like Float Zone, Czochralski, Bridgman, or Travelling Heater Methods: Fluctuations of the heat transport due to time-dependent natural convection have could be reduced by more than an order of magnitude or the mass transport could be improved with respect to the a better radial symmetry and/or a more homogeneous microscopic segregation.  相似文献   

9.
A numerical study is presented of the electromagnetic and hydrodynamic field distributions induced by rotating magnetic fields in a conducting fluid contained in a cylindrical vessel with insulated and conducting walls and ends. Simulations are carried out to determine the effect of various rotating electromagnetic field configuration parameters on magnetohydrodynamic melt flow structure and velocity distributions. Results show that the flow motion consists of the primary azimuthal and secondary meridional flows and that the detailed pattern of these flows changes with the system parameters such as the electric conductivities of the container and the liquids, and the relative positions of the inductor and melts. It is found that the basic structure of the melt velocity distribution is not affected noticeably by the distribution of electromagnetic forces in the case of symmetric distribution, but it changes significantly if this symmetry breaks.  相似文献   

10.
Dopant concentration profiles are obtained for a Czochralski flow of liquid metal in a static crucible under either an axisymmetric vertical magnetic field or a horizontal uniform magnetic field. The latter magnetic field inevitably requires fully three-dimensional cylindrical coordinate model equations, which are successfully solved for the representative parameters Gr = 107, Pr = 0.01, Re = 1620 and Ha 1000. Asymmetric concentration profiles are obtained. The average heat flux decreased with the Hartmann number. The circumferential rotational direction was found to be reversed in a lower regime against that of a top rotating crystal rod in a strong lateral magnetic field. In a vertical magnetic field, the concentration profile approached the pure diffusion state.  相似文献   

11.
Under a rotating magnetic filed (RMF), the instability of thermocapillary flow and its evolution with increasing Marangoni number (Ma) for semiconductor melt (Pr = 0.01) in a floating liquid bridge model (As = 1) are investigated numerically. Under 5 mT RMF, the thermocapillary flow is steady and axisymmetric with Ma < Mac, and the critical Marangoni number Mac for convection instability is 29.5, which is obtained by the direct numerical simulation. When the Ma is a little bit beyond the Mac, the thermocapillary flow loses stability to become a three‐dimensional rotating oscillatory convection, and a periodic oscillation is confirmed by the fast Fourier transform analysis, the oscillatory main frequency decays with increasing Ma. Under 1 mT–6 mT RMF, the Mac increases roughly with the magnetic strength except the Mac at 4 mT, where the corresponding change of flow mode after the instability is observed. The oscillatory convection occurs with a smaller Ma in the RMF than that without magnetic field. In addition, no instability toward a three‐dimensional steady convection, which is the state of thermocapillary flow without magnetic field after the first instability, is observed under the RMF.  相似文献   

12.
The impact of a rotating magnetic field (RMF) on the axial segregation in Vertical Gradient Freeze (VGF) grown, Ga doped germanium is investigated. Growth experiments were performed using the VGF‐RMF as well as the conventional VGF technique. Carrier concentration profiles characterising the Ga segregation were measured by the Spreading Resistance method and calibrated using Hall values of carrier concentration and mobility. The Ga concentration rises more gradually under RMF action, i.e., the dopant segregation is significantly reduced by the rotating field. This effect is attributed to a better mixing of the melt. Numerical results on the flow velocity confirm this explanation. The RMF induced flow is much more intense than the natural buoyant convection due to the radial temperature gradient and leads to a pronounced decrease of the effective partition coefficient keff. In the early stages of growth a keff value close to k0 was obtained, i.e., the gallium was almost homogeneously distributed within the melt. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The effect of applied rotating and combined (rotating and static) magnetic fields on silicon transport during the liquid phase diffusion growth of SiGe was experimentally studied. 72‐hour growth periods produced some single crystal sections. Single and polycrystalline sections of the processed samples were examined for silicon composition. Results show that the application of a rotating magnetic field enhances silicon transport in the melt. It also has a slight positive effect on flattening the initial growth interface. For comparison, growth experiments were also conducted under combined (rotating and static) magnetic fields. The processed samples revealed that the addition of static field altered the thermal characteristics of the system significantly and led to a complete melt back of the germanium seed. Silicon transport in the melt was also enhanced under combined fields compared with experiments with no magnetic field. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
磁场直拉硅原理的微观解释   总被引:1,自引:0,他引:1  
张雯 《人工晶体学报》2005,34(3):525-530
本文从电磁相互作用基本原理出发,研究锗熔体在垂直磁场中粘度的变化、液态汞在水平磁场中粘度的变化和粘度随磁场强度变化的机理,将研究结果拓展到磁场直拉硅的生产中,根据直拉硅和磁场直拉硅生产过程中,硅熔体中硅原子或原子团的带电状态和运动状态,提出了磁场直拉硅原理的微观解释,外加磁场改变了带电硅粒子(带电的硅原子或原子团)的热对流状态,抑制了熔体中的热起伏,稳定了结晶前沿处熔体的流动状态,为晶体生长提供了稳定的条件.  相似文献   

15.
Control of melt flow during Czochralski (CZ) crystal growth by application of magnetic fields is an important technique for large-diameter (>300 mm) silicon single crystals. Melt convection under magnetic fields is an interesting problem for electromagnetic-hydrodynamics. This paper reviews the effects of a vertical magnetic field and a cusp-shaped magnetic field on melt flow during CZ crystal growth. Melt flow in vertical magnetic fields or cusp-shaped magnetic fields was investigated by the direct observation method based on X-ray radiography and by numerical simulation. The first part of this review shows the result of direct observation of molten silicon flow under magnetic fields. It also compares the results of experimental and numerical simulation. The second part shows the details of the numerical simulation of the behavior of molten silicon in magnetic fields.  相似文献   

16.
Instability of the melt flow in VGF growth with a traveling magnetic field   总被引:1,自引:0,他引:1  
The linear instability of a thermally stratified melt flow in the VGF configuration driven by a traveling magnetic field (TMF) is considered numerically and experimentally. The dependency of the instability threshold on the governing parameters is found for several cuts through the parameter space covering a wide range of possible applications. In a first approximation the linear instability occurs when the dimensionless TMF forcing parameter reaches the magnitude of the Grashof number. This is particularly true in a medium-sized crucible where the first instability is axisymmetric and sub-critical. As the Grashof number increases the flow develops self-similar boundary layers and the instability becomes three-dimensional. The instability originates in the bottom boundary layer where the convection tends to suppress the imposed temperature gradient in the central part of the melt zone. It is shown that the TMF may serve as a tool to control the phase interface shape without causing flow instationarity when the crucible diameter exceeds a certain value. This value is estimated to be around 6 cm for GaAs. The flow stays stable if the TMF is used for a reversal of the meridional flow with the aim to remove a possible dopant concentration peak on the axis.  相似文献   

17.
For exploring the optimizing convection control technique by external magnetic field in floating zone crystal growth of semiconductor under microgravity, thermocapillary flow in a floating half‐zone model is simulated numerically, and the influences of both the transversal uniform magnetic field and the magnetic field generated by transversal four coils on thermocapillary flow are investigated. The results indicate that the transversal uniform magnetic field is likely to break the axisymmetrical structure of thermocapillary flow, which is unfavorable to the growth of high‐quality crystal; under the magnetic field generated by transversal four coils, both the mean and the maximum velocities increase with the increment of the distance between coils or the decrement of coil radius; and the convection tends to be more axisymmetrical with increasing coil radius. Compared to the transversal uniform magnetic field, the magnetic field generated by transversal four coils of appropriate radius and relative distance may not only suppress convection, but also enhance the axisymmetry of convection at the same time, and finally, the better convection control can be achieved. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Mechanical properties of a thin magnetic film subjected to an external, rotating magnetic field have been studied by computer simulations. The film is modeled by a two-dimensional bead-spring model of a non-magnetic polymer matrix with inclusions of magnetic nanoparticles (nanograins) of uniaxial anisotropy. The isotropic polymer matrix is represented as a hexagonal structure with sites decorated with small hexagonal particles containing magnetic nanograins. The beads correspond to polymer segments and the springs between them imitate chemical bonds, approximated by harmonic interactions. The beads also interact by the Lennard–Jones potential whose role is to mimic the core of non-bonded polymer segments.The Poisson ratio of the constructed polymer matrix is negative, i.e. the system expands laterally under longitudinal stretching force. It is shown that the magneto-elastic coupling can be used to control the expansion and contraction of the polymer matrix. Depending on the applied magnetic field, the Poisson ratio of the magnetic film may assume positive or negative values.  相似文献   

19.
Three-dimensional transient numerical simulations were carried out to investigate the melt convection and temperature fluctuations within an industrial Czochralski crucible. To study the magnetic damping effects on the growth process, a vertical magnetic field and a cusp magnetic field were considered. Due to our special interest in the melt convection, only local simulation was conducted. The melt flow was calculated by large-eddy simulation (LES) and the magnetic forces were implemented in the CFD code by solving a set of user-defined scalar (UDS) functions. In the absence of magnetic fields, the numerical results show that the buoyant plumes rise from the crucible to the free surface and the crystal–melt interface, which indicates that the heat and mass transfer phenomena in Si melt can be characterized by the turbulent flow patterns. In the presence of a vertical magnetic field, the temperature fluctuations in the melt are significantly damped, with the buoyant plumes forming regular cylindrical geometries. The cusp magnetic field could also markedly reduce the temperature fluctuations, but the buoyant plumes would break into smaller vortical structures, which gather around the crystal as well as in the center of the crucible bottom. With the present crucible configurations, it is found that the vertical magnetic field with an intensity of 128 mT can damp the temperature fluctuations more effectively than the 40 mT cusp magnetic field, especially in the region near the growing crystal.  相似文献   

20.
The influence of static axial, static transversal, and rotating magnetic fields on convective temperature fluctuations in liquid gallium (temperature range around 800 °C, Prandtl number 2.5 · 10−3) has been investigated. For a Rayleigh number of 6.3 · 10−5T = 10°C, h = 50 mm), convective temperature fluctuations with peak to peak values of 3 °C have been measured. Depending on the strength, the frequency, and the configuration of the field, they could be eliminated to ΔT < 0.01 °C (static axial field of 182 mT), damped to a nearly periodic state with 0.1 °C amplitudes (static transversal field of 45 mT), or reduced to 0.03 °C oscillations by applying a rotating field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号