首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(11):2007-2014
Abstract

A simple and inexpensive method for determining chromium (VI) in drinking water by spectrophotometry after preconcentration with sodium dodecyl sulphate (SDS) coated alumina column is described. Chromium(VI) is reacted with diphenylcarbazide (DPC) and the Cr-DPC complex is quantitatively adsorbed onto a SDS coated alumina column from 800 ml of sample solution. The complex is then eluted with a 8 ml mixture of methanol, acetone and hydrochloric acid and determined by spectrophotometry. Total chromium can be determined after oxidation of chromium (III) to chromium (VI) by KMnO4. The relative standard deviation (10 replicate analyses) at the 10 μg l?1 of chromium (VI) and 10 μg l?1 of total chromium were 3.5% and 3.4% and corresponding limits of detection (based on 3 σ) were 0.040 μg l?1 and 0.033 μg l?1, respectively.  相似文献   

2.
Dissolved chromium(III) and (VI) are coprecipitated separately from sea water, and chromium in the precipitates and particulate matter is determined by thin-film x-ray fluorescence spectrometry. In combination with an ultraviolet irradiation procedure whch releases bound metals, the method provides information about the speciation of chromium in near-shore surface sea water. The ratios of labile Cr(III)/(IIO+VI) generally lie in a narrow range (0.4–0.5) as do the sums of labile Cr(III) and (VI) concentrations (0.3–0.6 μg l?1). Bound chromium is variable (0–3 μg l?1) and constitutes from 0 to 90% of total dissolved chromium. Acidification of the samples in the traditional manner for trace metal determination is shown to alter the proportion of Cr(III) to Cr(VI).  相似文献   

3.
Application of Dowex 50W-X8 loaded with 2-amino-benzenethiol for preconcentration of total chromium (Cr(VI) and Cr(III)) in water samples and subsequent determination by inductively coupled plasma-atomic emission spectrometry was studied. The reagent 2-amino-benzenethiol loaded onto the resin effectively reduced Cr(VI) to Cr(III) and total chromium (both Cr(VI) and Cr(III)) formed chelate complex with the reagent in the Cr(III) valence state. Experimental parameters such as preconcentration time, solution flow rates, pH, and concentration of the eluent were optimized. The method has been applied for the determination of total chromium in seawater samples in the range of 0.1–200?µg?L?1. A detection limit of 0.3?µg?L?1 was achieved, and the relative standard deviation was about 5%.  相似文献   

4.
A sensitive spectrophotometric method has been developed for the determination of uranium. The uranium(IV)-chlorophosphonazo-III complex is extracted into 3-methyl-1-butanol from 1.5–3.0 M hydrochloric acid solution. Maximal absorbance occurs at 673 nm and Beer's law is obeyed over the range of 0–15 μg per 10 ml of the organic phase. The molar absorptivity is 12.1·104 1 mole?1 cm?1. Uranium can be determined in the presence of fluoride. sulfate and phosphate. Nitrate ion and elements (chromium, copper, iron) which affect the reduction of uranium(VI) or stability of uranium(IV) interfere.  相似文献   

5.
The optimum conditions for extraction of microquantities of chromium(VI) as an ion-association complex with blue tetrazolium chloride (BTC) and tetranitrotetrazolium blue chloride (TNBT) has been determined. The extracted species was a 1: 2 of the BTC and TNBT cation and the chlorochromate anion. Beer’s law was obeyed in the range of 0.04–0.8 μg/mL Cr(VI) for BTC and 0.1–1.6 μg/mL Cr(VI) for TNBT. The molar absorptivities were ?255 = 7.77 × 104 L/(mol cm) (for BTC) and ?275 = 2.04 × 104 L/(mol cm) (for TNBT). Sandell’s sensitivity of the systems were found to be 6.69 × 10?4 μg/cm2 (for BTC) and 2.55 × 10?3 μg/cm2 (for TNBT). Limit of detection (LOD) is 8.55 ng/mL and limit of quantitation (LOQ) is 0.028 μg/mL Cr(VI) for BTC. For TNBT, LOD is 0.031 μg/mL and LOQ is 0.103 μg/mL. The characteristic values for the extraction equilibrium and the equilibrium in the aqueous phase have been determined. A sensitive method for determination of trace of chromium(VI) in plants has been developed.  相似文献   

6.
The simultaneous or sequential determination of chromium(VI) and total chromium in water by flow injection analysis, using different configurations with a double- or single-beam spectrophotometer as detector, is investigated. The method is based on reaction between chromium(VI) and 1,5-diphenylcarbazide. Chromium(III) and (VI) are distinguished by using two carrier streams, one of which contains cerium(IV) to oxidize chromium(III) to chromium(VI). The determination range is 0.2–10.0 μg Cr ml?1; the r.s.d. is 0.8% for 1 μg Cr. The sampling frequency is 40 h?1. A wide study of interferences is reported.  相似文献   

7.
A procedure for determining the concentrations of dissolved chromium species in natural waters is described. Chromium(III) and chromium(VI), separated by co-precipitation with hydrated iron(III) oxide, and total dissolved chromium are determined separately by conversion to chromium(VI), extraction with APDC into MIBK and determination by a.a.s. The detection limit is 40 ng l?1 Cr. The dissolved chromium not amenable to separation and direct extraction is calculated by difference. In the waters investigated, total concentrations were relatively high (1–5 μg l?1) with Cr(VI) the predominant species in all areas sampled with one exception, where organically bound chromium was the major species.  相似文献   

8.
A simple and convenient assay based on single-drop microextraction with infrared spectroscopy is reported for the determination of selenium. The extraction conditions were carefully optimized and selenium was preconcentrated through single-drop microextraction in 1,2-dichloroethane containing N-hydroxy-N-phenyl-N′-(o-tolyl) benzimidamide. The method is selective and almost all common ions including molybdenum(VI), chromium(VI), and tungsten(VI) did not interfere with the isolation protocol. The selenite band at 875?±?2?cm?1, which is assigned to the asymmetric vibrational stretch (υ3), was used for the quantification of selenium. Low limits of detection and quantification of 2.0 and 6.6?µg?L?1 demonstrate the sensitivity of the method. Good precision was evaluated by the standard deviation (2.0?µg?L?1) and relative standard deviation (0.5%) for 8?µg?L?1 was achieved for 10 measurements. The method was used to analyze human blood, urine, and water for selenium.  相似文献   

9.
Chromium(VI) (0–5 μg) can be determined spectrophotometrically at 365 nm after flow-injection extraction into chloroform of the ion-associate, tetramethylenebis(triphenylphosphonium) dichromate. The carrier stream is distilled water and the reagent stream contains 1 M sulphuric acid and 0.5% (w/v) tetramethylenebis(triphenylphosphonium) bromide. The sampling rate is 24 h?1. The calibration graph is linear up to 20 μg ml?1 and the detection limit is 0.44 μg ml?1 chromium, based on injection volumes of 250 μl. The system has been applied to the determination of chromium in a range of steels.  相似文献   

10.
A sensitive and simple method for determination of chromium species after separation and preconcentration by solid phase extraction (SPE) has been developed. For the determination of the total concentration of chromium in solution, Cr(VI) was efficiently reduced to Cr(III) by addition of hydroxylamine and Cr(III) was preconcentrated on a column of immobilised ferron on alumina. The adsorbed analyte was then eluted with 5?mL of hydrochloric acid and was determined by flame atomic absorption spectrometery. The speciation of chromium was affected by first passing the solution through an acidic alumina column which retained Cr(VI) and then Cr(III) was preconcentrated by immobilised ferron column and determined by FAAS. The concentration of Cr(VI) was determined from the difference of concentration of total chromium and Cr(III). The effect of pH, concentration of eluent, flow rate of sample and eluent solution, and foreign ions on the sorption of chromium (III) by immobilised ferron column was investigated. Under the optimised conditions the calibration curve was linear over the range of 2–400?µg?L?1 for 1000?mL preconcentration volume. The detection limit was 0.32?µg?L?1, the preconcentration factor was 400, and the relative standard deviation (%RSD) was 1.9% (at 10?µg?L?1; n?=?7). The method was successfully applied to the determination of chromium species in water samples and total chromium in standard alloys.  相似文献   

11.
A novel inhibition-based glucose oxidase (GOx) biosensor for environmental chromium(VI) detection is described. An electropolymerized aniline membrane has been prepared on a platinum electrode containing ferrocene as electron transfer mediator, on which GOx is cross-linked by glutaraldehyde. The mechanism of the redox reaction on the electrode and the performance of the sensor are studied. The sensor's response to glucose decreases when it is inhibited by chromium(VI), with a lower detection limit of 0.49?µg?L?1, and the linear response range is divided into two parts, one of which is 0.49–95.73?µg?L?1 and the other is 95.73?µg?1 to8.05?mg?L?1. The enzyme membrane is shown to be completely reactivated after inhibition, retaining 90% activity over more than forty days. Interference to chromium(VI) determination from lead(II), copper(II), cadmium(II), chromium(III), cobalt(II), tin(II) and nickel(II) is found to be minimal, while high concentrations of mercury(II) and silver(I) may interfere with the determination of trace chromium(VI). The sensor has been used for chromium(VI) determination in soil samples with good results.  相似文献   

12.
A simple, rapid, sensitive, and inexpensive method for spectrophotometric determination of chromium(VI), based on the absorbance of its complex with 1,4,8,11-tetraazacyclotetradecane (cyclam) is presented. The complex showed a molar absorbtivity of 1.5?×?104?L?mol?1?cm?1 at 379?nm. Under optimum experimental conditions, a pH of 4.5 and 1.960?×?103?mg?L?1 cyclam were selected, and all measurements were performed 10?min after mixing. Major cations and anions did not show any interference; Beer's law was applicable in the concentration range 0.2–20?mg?L?1 with a detection limit of 0.001?mg?L?1. The standard deviation in the determination is ±0.5?mg?L?1 for a 15.0?mg?L?1 solution (n?=?7). The described method provides a simple and reliable means for determination of Cr(VI) in real samples.  相似文献   

13.
A sensitive and selective spectrophotometric method for the determination of acetone in acetic acid has been worked out. It is based on the reaction of acetone with diazotized p-aminobenzoic acid in a strongly alkaline medium to form a purple color with maximum absorption at 540 nm. Beer's law holds up in the range 20–140 μg of acetone in a final volume of 20 ml, with a molar absorptivity of 8.1 × 103 liters mol?1 cm?1, sensitivity index of 0.0072 μg cm?2, relative error of ?1.9 to +0.6%, and relative standard deviation of 0.7–3.5, depending on the concentration level. Furthermore, the color reaction is fast, and the procedure is simple, and avoids the use of an extraction.  相似文献   

14.
《Analytical letters》2012,45(13-14):2813-2834
Abstract

Spectrophotometric procedure is described for the quantitative determination of diphenadione [2-(diphenylacetyl)-1,3-indandione], based on direct spectrophotometric measurements of the absorbances of its iron (III), iron (II) and cobalt (II), metal complexes at 488 nm, 505 nm and (334 nm, 372 nm), respectively. The drug reacts with metals in the ratio of 3:1 and 2:1 for iron (III) and for both iron (II) and cobalt (II) respectively. The obtained complexes have apparent molar absorptivities of 1.48 × 103 1 mol?1 cm?1, 0.714 × 103 1 mol?1cm?1 and (1.70 × 103 1 mol?1cm?1, 1.93 × 103 1 mol?1cm?1) for iron (III), iron (II) and cobalt (II) complexes, respectively. The procedure is suggested for the determination of 51–400 μg.ml?1 diphenadione via the iron (II) complex and 35–170 μg.ml?1 diphenadione via both cobalt (II) and iron (III) complexes. The suggested procedure has accuracies of 99.79 ± 0.67%, 99.64 ± 0.37% and (100.09 ± 0.53%, 99.99 ± 0.42%) for the metal complexes of iron (III), iron (II) and cobalt (II), respectively.  相似文献   

15.
2,2′-Dipyridyl-2-quinolylhydrazone (DPQH) was used for the spectrophotometric determination of trace amount of iron(II) after the extraction process. Iron(II) reacts with DPQH at pH 3.4–4.5 to form a water-insoluble 1:2 complex, which can be extracted with many kinds of organic solvent. The extracted species with benzene has absorption maxima at 473, 504, and 644 nm and obeyed Beer's law over the range 0–14 μg of iron at 504 nm and 0–33 μg at 644 nm. The molar absorptivities at 504 and 644 nm are 3.14 × 104 and 1.30 × 104M?1 cm?1, respectively. DPQH is one of the most sensitive reagents for iron(II) and trace amount of iron(II) can be determined in the presence of fairly large amounts of other ions. Possible equilibria involved in the extraction process were also studied.  相似文献   

16.
The determination of total chromium by flow injection analysis is described. Cerium(IV) and nitric acid are used to convert chromium(III) to chromium(VI); the oxidation rate is enhanced by placing the reaction coil in an 80°C oil bath. 1,5-Diphenylcarbazide is used to form a colored complex with chromium(VI) that is measured at 540 nm. For both chromium(III) and chromium(VI), relative standard deviation of less than 1% is achieved with a sampling rate of 40 per hour. Linear response is obtained for 0.5–10 mg l?1 chromium.  相似文献   

17.
《Analytical letters》2012,45(11):1839-1845
Abstract

A new spectrophotometric method was developed for the assay of 0–6 mg/1 of iron (II) in a number of certified Iraqi drugs. The Sandell index is 0.07 μg cm2- and the ? max is 6000 1 mol?1 cm?1. An interference study is also described.  相似文献   

18.
A selective preconcentration of chromium(VI) is proposed for analysis of natural waters. Chromium(VI) is quantitatively separated from chromium(III) by coprecipitation with barium sulfate; salicylic acid is used as a masking agent for iron(III), aluminum(III) and chromium(III). The precipitate is fused with alkali carbonate, and the chromium(VI) in the melt is isolated with hot water and determined spectrophotometrically with diphenylcarbazide. The detection limit is 0.02 μg l-1 the relative standard deviation for chromium(VI) in river water is less than 5%.  相似文献   

19.
The effect of arsenate and phosphate ions on the adsorption and color reaction of uranium(VI) with Arsenazo III on the solid phase of a fibrous material filled with the EDE-10p anion exchanger was studied in different adsorption processes. We selected the optimum conditions for the system of U(VI)-AsO 4 3? (H2PO 4 ? )-PANV-EDE-10p-Arsenazo III and used this system for the adsorption-spectrophotometric determination of (0.03–0.3) 10?3 M arsenate, (0.004–0.06) 10?3 M phosphate, and 0.01–0.1 μg/mL uranyl ions.  相似文献   

20.
Iron (III) forms brown coloured complex with 3-hydroxy-2-methyl-1,4-naphthoquinone monoxime. The iron (III)-HMNQM complex is found to be soluble in DMF and exhibits maximum absorption at 470 nm in the pH range 4.5–5.5. Beer's law is obeyed upto 5.58 ppm of iron (III) and sensitivity of the reaction is 0.0046 μg/cm2, with molar absorptivity of 1.21×104 ? mole?1 cm?1. The method has been used for the determination of iron (III) in alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号