首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Ye J  Ma LS  Daly T  Hall JL 《Optics letters》1997,22(5):301-303
Using a 10.5-GHz resonant electro-optic modulator placed inside a resonant optical cavity, we generated an optical frequency comb with a span wider than 3 THz. The optical resonator consists of three mirrors, with the output coupler being a thin Fabry-Perot cavity with a free spectral range of 2 THz and a finesse of 400. Tuning this filter cavity onto resonance with a particular high-order sideband permits efficient output coupling of the desired sideband power from the comb generator, while keeping all other sidebands inside for continued comb generation. This spectrally pure output light was then heterodyne detected by another laser with a frequency offset of the order of 1 THz.  相似文献   

2.
Li  Zhongyang  Yang  Lulu  Wang  Kaiwu  Shi  Chenxu  Chen  Zhiliang  Xu  Juan  Bing  Pibin  Zhu  Anfu  Xu  Degang  Zhong  Kai  Yao  Jianquan 《Optical Review》2023,30(4):411-417
Optical Review - A novel scheme that generates terahertz optical frequency comb (THz OFC) based on optimized cascaded difference frequency generation (OCDFG) with an aperiodically poled lithium...  相似文献   

3.
We overview methods of THz-wave generation using frequency down-conversion in GaAs with periodically-inverted crystalline orientation. First, we compare different nonlinear-optical materials suitable for THz generation, analyze THz generation process in quasi-phase-matched crystals and consider theoretical limits of optical-to-THz conversion. Then, we review single-pass optical rectification experiments with femtosecond pump pulses, performed in periodically-inverted GaAs, where monochromatic THz output tunable in the range 0.9–3.0 THz was produced. Finally, we describe a novel approach to create a compact highly efficient tunable (0.5–3.5 THz) room temperature monochromatic THz source, based on the concept of intracavity THz generation via resonantly-enhanced difference frequency mixing. This approach allowed generating of 1 mW of average THz power, potentially scalable to 10–100 mW.  相似文献   

4.
We report the heterodyne detection and phase locking of a 2.5?THz quantum cascade laser (QCL) using a terahertz frequency comb generated in a GaAs photomixer using a femtosecond fiber laser. With 10?mW emitted by the QCL, the phase-locked signal at the intermediate frequency yields 80?dB of signal-to-noise ratio in a bandwidth of 1?Hz.  相似文献   

5.
We present a multiwavelength source with a spectral width of 42 nm at -20 dB. The frequency comb is generated by spectrally broadening the output of an amplified 50 GHz Er:Yb:glass laser with a highly nonlinear photonic crystal fiber. After spectral flattening the comb covers 37 channels with 5.4 mW average power per channel, and locking only one central wavelength channel to the International Telecommunication Union grid results in a maximum frequency error of 0.24% for all channels.  相似文献   

6.
We report a method for optimizing the amplification of femtosecond optical pulses by using dispersion management. The amount of dispersion provided to the seed optical pulse of an erbium-doped fiber (EBF) has an optimal region that enhances the output power of an amplifier. The power enhancement is accompanied by spectral broadening, which originates from adiabatic narrowing in the erbium-doped fiber. The amplified optical pulses can be used to generate an octave-spanning optical frequency comb (OFC) by employing a highly nonlinear fiber (HNLF).  相似文献   

7.
In this paper we describe the stabilization of the optical frequency comb (OFC) generated by the frequency-shifted feedback (FSF) erbium fiber laser. Frequency of the comb is controlled using the distributed feedback laser diode seeded into the cavity of the FSF laser. When the DFB diode is stabilized to the molecular absorption line of hydrogen cyanide frequency stabilized OFC is obtained.  相似文献   

8.
We report a mode-locked Ti:sapphire femtosecond laser emitting 42 fs pulses at a 10 GHz repetition rate. When operated with a spectrally integrated average power greater than 1 W, the associated femtosecond laser frequency comb contains approximately 500 modes, each with power exceeding 1 mW. Spectral broadening in nonlinear microstructured fiber yields comb elements with individual powers greater than 1 nW over approximately 250 nm of spectral bandwidth. The modes of the emitted comb are resolved and imaged with a simple grating spectrometer and digital camera. Combined with absorption spectroscopy of rubidium vapor, this approach permits identification of the mode index and measurement of the carrier envelope offset frequency of the comb.  相似文献   

9.
We report generation of terahertz (THz) radiation in a planar 61-microm-thick GaAs waveguide with a TM0 propagation mode, achieved by phase-matched difference frequency mixing. The THz output was centered near 2 THz and had 1 microW average power. As a pump source we utilized both the signal and the idler outputs of a near-degenerate type II synchronously pumped optical parametric oscillator operating near 2 microm with the average powers of 250 and 750 mW, correspondingly.  相似文献   

10.
刘欢  曹士英  孟飞  林百科  方占军 《物理学报》2015,64(9):94204-094204
飞秒光学频率梳波长覆盖范围向可见光波长扩展对于碘稳频激光的绝对频率测量以及光钟研究中钟激光的绝对频率测量都具有十分重要的意义. 本文在自行研制掺Er光纤飞秒光学频率梳的基础上, 采用放大-倍频-扩谱的方案, 实现了激光输出波长向可见光波长的扩展. 掺Er光纤飞秒光学频率梳输出的一部分光激光脉冲, 功率约为8 mW, 首先经掺Er光纤放大器将功率提高到531 mW, 此后利用MgO: PPLN晶体倍频, 倍频后激光的功率为170 mW, 倍频效率为32%, 脉冲宽度为85 fs. 倍频后的激光通过光子晶体光纤进行光谱展宽. 通过优化入射光偏振状态可以实现波长覆盖500-1000 nm, 输出功率为85 mW, 耦合效率为50%. 采用小型化碘稳频532 nm Nd: YAG激光器输出激光与光学频率梳光谱展宽后的激光进行拍频可以获得30 dB的拍频信号. 覆盖可见光波长的掺Er光纤飞秒光学频率梳为可见光范围内激光的绝对频率测量提供了技术手段.  相似文献   

11.
We demonstrate a great simplification in the long-standing problem of measuring optical frequencies in terms of the cesium primary standard. An air-silica microstructure optical fiber broadens the frequency comb of a femtosecond laser to span the optical octave from 1064 to 532 nm, enabling us to measure the 282 THz frequency of an iodine-stabilized Nd:YAG laser directly in terms of the microwave frequency that controls the comb spacing. Additional measurements of established optical frequencies at 633 and 778 nm using the same femtosecond comb confirm the accepted uncertainties for these standards.  相似文献   

12.
Cruz FC  Stowe MC  Ye J 《Optics letters》2006,31(9):1337-1339
A tapered semiconductor amplifier is injection seeded by a femtosecond optical frequency comb at 780 nm from a mode-locked Ti:sapphire laser. Energy gains of more than 17 dB(12 dB) are obtained for 1 mW(20 mW) of average input power when the input pulses are stretched into the picosecond range. A spectral window of supercontinuum light generated in a photonic fiber has also been amplified. Interferometric measurements show sub-Hertz linewidths for a heterodyne beat between the input and amplified comb components, yielding no detectable phase-noise degradation under amplification. These amplifiers can be used to boost the infrared power in f-to-2f interferometers used to determine the carrier-to-envelope offset frequency, with clear advantages for stabilization of octave-spanning femtosecond lasers and other supercontinuum light sources.  相似文献   

13.
Pan Zhang 《中国物理 B》2022,31(5):54210-054210
We demonstrate an optical frequency comb (OFC) based on a turnkey mode-locked laser with a figure-9-shape structure and polarization-maintaining fibers, for the comparison of frequency among optical clocks with wavelengths of 698 nm, 729 nm, 1068 nm, and 1156 nm. We adopt a multi-branch approach in order to produce high power OFC signals at these specific wavelengths, enabling the signal-to-noise ratio of the beatnotes between the OFC and the clock lasers to exceed 30 dB at a resolution bandwidth of 300 kHz. This approach makes the supercontinuum spectra much easier to be generated than a single branch OFC. However, more out-of-loop fibers degrade the long-term frequency instability due to thermal drift. To minimize the thermal drift effect, we set the fiber lengths of different branches to be similar, and we stabilize the temperature as well. The out-of-loop frequency instability of the OFC due to the incoherence of the multi-branch is about 5.5×10-19 for 4000 s, while the in-loop frequency instability of fceo and that of fbeat are 7.5×10-18 for 1 s and 8.5×10-18 for 1 s, respectively. The turnkey OFC meets the requirement for the comparison of frequency between the best optical clocks.  相似文献   

14.
We obtained a frequency tunable, low-coherence, picosecond, terahertz (THz) output with a high repetition rate from a picosecond Nd:YVO4 bounce laser in combination with tandem periodically poled stoichiometric lithium tantalate and 4′-dimethylamino-N-methyl-4-stilbazolium tosylate crystals. The frequency of the THz output was tunable in the range 2.1–7.1 THz with a linewidth of ~3.5 THz at 2.2 THz. The THz output had a maximum peak power of ~180 mW and an average power of ~0.65 μW at 3.9 THz. This system has the potential to realize ultra-high speed, THz coherence tomography.  相似文献   

15.
A 197.2 THz (1520.2 nm) ITU-T grid distributed feedback (DFB) diode laser is frequency stabilized at 197.198 THz by 1ocking its second harmonic (SH) signal on the rubidium 5S1/2→7S1/2 two-photon transition at 394.396 THz (760.1 nm). With 100 mW from the DFB diode laser and amplifying by an erbium-doped fiber amplifier, we obtain an SH power of 15 mW using a periodically poled lithium niobate (PPLN) waveguide frequency doubler. The stability was 2×10−11 (10 s), corresponding to a frequency variation of 4 kHz at 1520.2 nm. Our scheme provides a compact and high performance frequency reference in the communication band.  相似文献   

16.
The frequency-domain mode comb of a Ti:sapphire femtosecond laser centered at 350 THz is broadened to 150 THz (full width at -30 dBc) by self-phase modulation in a single-mode optical fiber. By phase locking continuous-wave lasers to elements of the comb near 1064 and 778 nm, we measure the 104-THz frequency gap between these two lasers with a relative uncertainty of 2.7 x 10(-11) in 1 s.  相似文献   

17.
Shi W  Leigh M  Zong J  Jiang S 《Optics letters》2007,32(8):949-951
We demonstrate a unique terahertz (THz) source that is compact, utilizes recently developed all-fiber Q-switched lasers, and is based on difference-frequency generation in a GaSe crystal. A single piezo simultaneously Q switched the two fiber lasers by using stress-induced birefringence, to achieve the temporal overlap of pulses from the two fiber lasers. These correlated pulses then combine in the GaSe crystal to produce coherent and highly monochromatic THz pulses. The peak power for this THz source can reach 0.53 mW, corresponding to an average power of 0.43 microW and a conversion efficiency of 4.75 x 10(-7). The estimated linewidth of this THz source can be as narrow as approximately 35 MHz or 1.17 x 10(-3) cm(-1).  相似文献   

18.
Ycas G  Osterman S  Diddams SA 《Optics letters》2012,37(12):2199-2201
We present a multibranch laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 THz of bandwidth, from 660 nm to 2100 nm. Light from a mode-locked Er:fiber laser is amplified and then broadened in highly-nonlinear fiber to produce substantial power at ~1050 nm. This light is subsequently amplified in Yb:fiber to produce 1.2 nJ, 73 fs pulses at 1040 nm. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1040 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.  相似文献   

19.
Fluoride glass Raman fiber laser at 2185 nm   总被引:1,自引:0,他引:1  
We report on the first Raman laser based on a fluoride glass optical fiber. The Raman fiber laser was pumped by a 9.6?WTm3+:silica CW fiber laser operating at a wavelength of 1940?nm. A maximum output power of 580?mW was measured at 2185.1?nm, corresponding to a frequency shift of 579?cm(-1) (17.37?THz). We observed a threshold power of 3.8?W and a low power slope efficiency of 29% with respect to the launched pump power. Using those results and the known fiber parameters, we estimated a Raman gain peak value of 3.52*10(-14)?m/W, which is lower than the previously reported values.  相似文献   

20.
303MHz高重复频率掺Er光纤飞秒激光器   总被引:1,自引:0,他引:1       下载免费PDF全文
刘欢  巩马理  曹士英  林百科  方占军 《物理学报》2015,64(11):114210-114210
高重复频率掺Er光纤飞秒激光器在光学频率梳、超高速光学采样等领域具有很重要的作用. 本文采用非线性偏振旋转锁模机理, 在掺Er光纤飞秒激光器中实现了重复频率为303 MHz的锁模脉冲输出. 通过优化腔内色散, 激光器腔内色散在零色散附近偏负值, 锁模后工作在展宽脉冲锁模状态. 在817 mW抽运功率下, 激光器在连续光状态下可以输出125 mW的平均功率, 在锁模状态下可以输出69 mW的平均功率, 脉冲宽度为90 fs. 当抽运功率处于700-817 mW时, 激光器可以实现自启动锁模. 激光器重复频率在5 h内的漂移量为30 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号