首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the framework of supergravity models without grand unified steps, we analyse in detail the consequences of the hypothesis that gauginos have no bare masses due to supergravity interactions. To this purpose we have made a one-loop calculation of wino, zino, and photino masses and a renormalization group improved two-loop calculation of the gluino masses.We find that: (i) the non-observation of charged winos is compatible either with a gravitino mass m ? 300 GeV or m ?3 TeV; (ii) with a top quark mark of about 40 GeV, gluino and photino have very similar masses ranging from O(1 GeV) to O(20 GeV). In most cases consistency with cosmology requires that the gauge singlet needed to break the SU(2) × U(1) symmetry, be the lightest stable supersymmetric particle, with a mass as low as 1 keV or less. In such cases photino (or gluino) lifetimes into one photon (gluon) and one light singlet fermion (zerino), are typically between 10?3 and 1 sec.We discuss the problem of the experimental detection of gauginos, which, according to the various options, require rather different approaches.  相似文献   

2.
We show that in a large class of superstring inspired E(6) models considered in the literature the requirement of perturbative unification implies that the lightest neutral exotic fermion (≠ νc) is lighter than 115 GeV. In many models this fermion may be considerably lighter and may even be the lightest supersymmetric particle. It is argued that such a particle is compatible with all known experiments and with cosmology. Some phenomenological implications are also discussed.  相似文献   

3.
We discuss the constraints on supersymmetry in the Higgs sector arising from LHC searches, rare B decays and dark matter direct detection experiments. We show that constraints derived on the mass of the lightest h 0 and the CP-odd A 0 bosons from these searches are covering a larger fraction of the SUSY parameter space compared to searches for strongly interacting supersymmetric particle partners. We discuss the implications of a mass determination for the lightest Higgs boson in the range 123<M h <127?GeV, inspired by the intriguing hints reported by the ATLAS and CMS Collaborations, as well as those of a non-observation of the lightest Higgs boson for MSSM scenarios not excluded at the end of 2012 by LHC and direct dark matter searches and their implications on LHC SUSY searches.  相似文献   

4.
We consider low-energy supersymmetric model with non-anomalous discrete R-symmetry. To make the R-symmetry non-anomalous, we add new particles to the particle content of the minimal supersymmetric standard model (MSSM). Those new particles may couple to the Higgs boson, resulting in a significant enhancement of the lightest Higgs mass. We show that, in such a model, the lightest Higgs mass can be much larger than the MSSM upper bound; the lightest Higgs mass as large as 140 GeV (or larger) becomes possible.  相似文献   

5.
The possibility of observing Higgs particles through virtual effects is considered in detail for a general gauge theory. The effect of charged Higgs particles on low-energy weak interaction processes, like muon decay, tau decay, nuclear beta decay, pion decay, and some higher-order processes is analyzed. The effect of flavor-changing neutral Higgs particles on rare decay modes of the muon and kaon, μe conversion, Ko-Ko and Do-Do mixing is also studied. We discuss constraints on possible extensions of the Weinberg-Salam model and experiments sensitive to their Higgs particles. In particular, we analyze the neutral Higgs which couple to fermions in the minimal SU(2)L×SU(2)R×U(1) model and find that they probably have mass greater than 100 GeV.  相似文献   

6.
A theoretical analysis of solutions of renormalization group equations in the minimal supersymmetric standard model, which lead to a quasi-fixed point has shown that the mass of the lightest Higgs boson in these models does not exceed 94 ± 5 GeV. This implies that a considerable part of the parameter space in the minimal supersymmetric model is in fact eliminated by existing LEPII experimental data. In the nonminimal supersymmetric standard model the upper bound on the mass of the lightest Higgs boson reaches its maximum in the strong Yukawa coupling regime when the Yukawa constants are substantially greater than the gauge constants on the grand unification scale. In the present paper the particle spectrum is studied using the simplest modification of the nonminimal supersymmetric standard model which gives a self-consistent solution in this region of parameter space. This model can give m h ~ 125 GeV even for comparatively low values of β ≥ 1.9. The spectrum of Higgs bosons and neutralinos is analyzed using the method of diagonalizing mass matrices proposed earlier. In this model the mass of the lightest Higgs boson does not exceed 130.5 ± 3.5 GeV.  相似文献   

7.
Supersymmetric models allow the possibility of finding new light spin-12 fermions (m <mw, and perhaps m < 10–15 GeV, charged or neutral) that are (apart from mixing effects) the supersymmetric partners of W, Z0, and Higgs bosons. We provide a detailed analysis of their expected properties, production mechanisms, and signatures, with emphasis on detection at e+e- colliders. Although the charged, spin-12 particles resemble sequential leptons, it turns out that their properties differ enough that they might have been missed in the standard searches with normal cuts, and they still might be found with m < 18 GeV. A neutral, spin-12 particle with m below about 30 GeV could exist with a clear decay signature and be singly produced at detectable rates at present machines (picobarn cross sections).  相似文献   

8.
Nowadays, in the MSSM, the moderate values of tan β are almost excluded by the LEP II lower bound on the mass of the lightest Higgs boson. In the next-to-minimal supersymmetric standard model (NMSSM), the theoretical upper bound on it increases and reaches a maximal value in the limit of strong Yukawa coupling, where all solutions to renormalization-group equations are concentrated near the quasifixed point. For a calculation of the Higgs boson spectrum, the perturbation-theory method can be applied. We investigate the particle spectrum within the modified NMSSM, which leads to the self-consistent solution in the limit of strong Yukawa coupling. This model allows one to get m h~125 GeV at tan β≥1.9. In the model under investigation, the mass of the lightest Higgs boson does not exceed 130.5±3.5 GeV. The upper bound on the mass of the lightest CP-even Higgs boson in more complicated supersymmetric models is also discussed.  相似文献   

9.
We present one approach for solving the gauge hierarchy problem in a grand unified supersymmetric theory. Supersymmetry is broken at a scale of order 1012 GeV. Both the grand scale (~1019 GeV) and the weak scale are generated via radiative corrections. The main phenomenological features of the model are: (i) the proton decays into K0μ+andK+νμ and the neutron decays into K0νμ; (ii) the strong GP problem is solved with an invisible axion; (iii) the superpartners of quarks, leptons, gauge and Higgs bosons have masses ~ 50–100 GeV; and (iv) the lightest superpartner is stable.  相似文献   

10.
A search for light Higgs bosons was performed using the data sample collected in 1990 by the DELPHI detector at LEP, at centre of mass energies between 88.2 and 94.2 GeV. Using the process e+eH 0+Z 0*,Z 0*ff, it is possible to exclude the existence of the standard model Higgs particle with a mass between 0 and 210 MeV/c2 at the 99% confidence level. Extending this analysis to the minimal supersymmetric standard model restricts the lightest neutral Higgs boson to masses above 28 GeV/c2 irrespective of the value of the mixing angle.  相似文献   

11.
We discuss the Higgs scenario in the minimal supersymmetric extension of the Standard Model ate +e? linear colliders operating in the c.m. energy range between 300 and 500 GeV. Besides decays of the Higgs particles into ordinary fermions and cascade decays, we analyze also decays into gaugino/Higgsinos and in particular, neutral Higgs decays into the lightest supersymmetric particles which are invisible ifR-parity is conserved. The cross sections for the various production channels of SUSY Higgs particles ine +e? collisions are discussed in detail. The lightest Higgs boson cannot escape detection, and in major parts of the MSSM parameter space all five Higgs particles can be observed.  相似文献   

12.
We make a careful analysis of the constraints on supergravity parameters from the requirement of SU(2)×U(1) symmetry breaking. Since we obtain fully analytic solutions to the relevant renormalization group equations, we are able to explore the whole range of parameters. Breaking electroweak symmetry with a light top quark leads to a strong correlation between the dimensionless parameters and the mass ratios in the supergravity lagrangian. However, the overall mass scale, e.g. m32, is not fixed by this requirements. The bound on the lightest neutral Higgs boson is reexamined. The lightest squark is usually an s-top, but we easily find cases where it is a s-bottom. Unfortunately the low-energy constraints provide no useful guidelines for experimentalists.  相似文献   

13.
Using the 1/N expansion, we argue that the O2N Higgs-Goldstone model may be a good indicator of the behavior of the standard SU2 ? U1 electroweak model in the non-perturbative limit of a strongly interacting Higgs sector. We emphasize that there remains a physical scalar particle or resonance σ (Higgs remnant), whose mass (and width) will be set by the weak scale. However, its coupling to vector bosons is expected to be much stronger than the standard model Higgs of comparable mass. This provides evidence that there is an upper limit to the Higgs mass in the hundreds of GeV, regardless of whether naturalness constraints are imposed on the parameters of the effective lagrangian. We conclude with some comments about the possible relevance of this particle to the radiative events observed at the CERN pp collider.  相似文献   

14.
We analyze the contribution of the SUSY particles to the coupling of the lightest Higgs boson to two photons in supersymmetric theories. We discuss to what extent these contributions can be large enough to allow for a discrimination between the lightest SUSY and the standard Higgs particles in the decoupling limit where all other Higgs bosons are very heavy and no supersymmetric particle has been discovered at future colliders. We find that only chargino and top squark loops can generate a sizeable difference between the standard and the SUSY Higgs-photon couplings. For masses above 250 GeV, the effect of chargino loops on the two-photon width is however smaller than ≈ 10% in the entire SUSY parameter space. Top squarks heavier than 250 GeV can induce deviations larger than 10% only if their couplings to the Higgs boson are large. Since top squark contributions can be sizeable, we derive the two-loop QCD correction to squark loops and show that they are well under control.  相似文献   

15.
Recently, both the ATLAS and CMS experiments have observed an excess of events that could be the first evidence for a 125 GeV Higgs boson. This is a few GeV below the (absolute) vacuum stability bound on the Higgs mass in the Standard Model (SM), assuming a Planck mass ultraviolet (UV) cutoff. In this Letter, we study some implications of a 125 GeV Higgs boson for new physics in terms of the vacuum stability bound. We first consider the seesaw extension of the SM and find that in type III seesaw, the vacuum stability bound on the Higgs mass can be as low as 125 GeV for the seesaw scale around a TeV. Next we discuss some alternative new physics models which provide an effective ultraviolet cutoff lower than the Planck mass. An effective cutoff Λ?1011 GeVΛ?1011 GeV leads to a vacuum stability bound on the Higgs mass of 125 GeV. In a gauge–Higgs unification scenario with five-dimensional flat spacetime, the so-called gauge–Higgs condition can yield a Higgs mass of 125 GeV, with the compactification scale of the extra-dimension being identified as the cutoff scale Λ?1011 GeVΛ?1011 GeV. Identifying the compactification scale with the unification scale of the SM SU(2) gauge coupling and the top quark Yukawa coupling yields a Higgs mass of 121±2 GeV121±2 GeV.  相似文献   

16.
We consider a particular supersymmetric extension of the standard model involving a light singlet and explainingM Weak?M Planck naturally, without detailed assumptions about a GUT or supergravity sector. Imposingm cl>45 GeV for the lightest chargino andm H1>20 GeV for the lightest Higgs scalar, the model survives all other constraints due to recent LEP results; it predicts, however, supersymmetric and Higgs particles to be seen in the near future.  相似文献   

17.
18.
In the Glashow-Weinberg-Salam model the fermions have ΔI = 12 masses from the breaking of the weak SU(2) gauge symmetry. In many enlarged models, such as those from grand unified and/or supersymmetric theories, there are additional fermions with undetermined ΔI = 0 (SU(2) invariant) masses. We study these new fermions. They induce flavour changing neutral currents. We show that the mixing angles of ΔI = 0 fermions of mass order M with normal ΔI = 12 fermions of mass order m ? M are order η or η2, where η = m/M. If M > 150 δ, δ being a model-dependent mixing parameter of order a normal fermion mass, the amplitudes of all FCNC processes are below the experimental sizes and limits. Thus for δ?0.1 GeV, M can be as low as 20 GeV, close to the present experimental lower bound. δ is fixed, and less than 0.1 GeV for all relevant cases, if we assume the mass hierarchy of the known fermions is not the result of a particular choice of ΔI = 0 mass parameters. If produced ΔI = 0 mass fermions will be noticeable by the mass degeneracy within their isospin multiplets. There will be an enhanced ratio of neutral to charged decays over the normal fermions. Standard GUT predictions are changed little.  相似文献   

19.
The discovery of a 125.5 GeV Higgs with standard model-like couplings and naturalness considerations motivate gauge extensions of the MSSM. We analyse two variants of such an extension and carry out a phenomenological study of regions of the parameter space satisfying current direct and indirect constraints, employing state-of-the-art two-loop RGE evolution and GMSB boundary conditions. We find that due to the appearance of non-decoupled D-terms it is possible to obtain a 125.5 GeV Higgs with stops below 2 TeV, while the uncoloured sparticles could still lie within reach of the LHC. We compare the contributions of the stop sector and the non-decoupled D-terms to the Higgs mass, and study their effect on the Higgs couplings. We further investigate the nature of the next-to lightest supersymmetric particle, in light of the GMSB motivated searches currently being pursued by ATLAS and CMS.  相似文献   

20.
《Physics letters. [Part B]》1987,194(2):231-235
We describe a simple N = 1 supersymmetric GUT based on the group SU(5)×U(1) which has the following virtues: the gauge group is broken down to the SU(3)C×SU(2)L×U(1)Y of the standard model using just 10, 10 Higgs representations, and doublet-triplet mass splitting problem is solved naturally by a very simple missing-partner mechanism. The successful supersymmetric GUT prediction for sin2θw can be maintained, whilst there are no fermion mass relations. The gauge group and representation structure of the model may be obtainable from the superstring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号