首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider a system of gravity plus free massless matter fields in 4 + N dimensions, and look for solutions in which N dimensions form a compact curved manifold, with the energy-momentum tensor responsible for the curvature produced by quantum fluctuations in the matter fields. For manifolds of sufficient symmetry (including spheres, CPN, and manifolds of simple Lie groups) the metric depends on only a single multiplicative parameter ?2, and the field equations reduce to an algebraic equation for ?, involving the potential of the matter fields in the metric of the manifold. With a large number of species of matter fields, the manifold will be larger than the Planck length, and the potential can be calculated using just one-loop graphs. In odd dimensions these are finite, and give a potential of form CN/?4. Also there are induced Yang-Mills and Einstein-Hilbert terms in the effective 4-dimensional action, proportional to additional numerical coefficients, DN and EN. General formulas are given for the gauge coupling g2 in terms of CN and DN, and the ratio ?2/8πG in terms of CN and EN. Numerical values for CN, DN, and EN are obtained for scalar and spinor fields on spheres of odd dimensionality N. It is found that the potential, g2 and ?2/8πG can all be positive but only when the compact manifold has N = 3 + 4 k dimensions. (The positivity of the potential is needed for stability of the sphere against uniform dilations or contractions). In this case, solutions exist either for spinor fields alone or for suitable mixes of spinor and scalar fields provided the ratio of the number of scalar fields to the number of fermion fields is not too large. Numerical values of the O(N + 1) gauge couplings and 8φG/?2 are calculated for illustrative values of the numbers of spinor fields. It turns out that large numbers of matter fields are needed to make these parameters reasonably small.  相似文献   

2.
Generalizing the work of Einstein and Mayer, it is assumed that at each point of space-time there exists a vector-spinor space with Nv vector dimensions and Ns spinor dimensions, where Nv=2k and Ns=2 k, k3. This space is decomposed into a tangent space with4 vector and4 spinor dimensions and an internal space with Nv4 vector and Ns4 spinor dimension. A variational principle leads to field equations for geometric quantities which can be identified with physical fields such as the electromagnetic field, Yang-Mills gauge fields, and wave functions of bosons and fermions.  相似文献   

3.
The number of four-dimensional chiral fermions obtained from dimensional reduction of models with spinor matter fields coupled to pure gravity in d > 4 dimensions is linked to topological properties of the internal d ? 4 dimensional space. This gives important restrictions on possible ground states of such models consistent with a realistic four-dimensional unified theory. Connections with spontaneous symmetry breaking and Yukawa couplings of fermions in unified theories are discussed.  相似文献   

4.
A unified theoretical treatment is presented to describe the physics of electron dynamics in semiconductor and graphene systems. Electron spin's fast alignment with the Zeeman magnetic field (physical or effective) is treated as a form of adiabatic spin evolution which necessarily generates a monopole in magnetic space. One could transform this monopole into the physical and intuitive topological magnetic fields in the useful momentum (K) or real spaces (R). The physics of electron dynamics related to spin Hall, torque, oscillations and other technologically useful spinor effects can be inferred from the topological magnetic fields in spintronic, graphene and other SU(2) systems.  相似文献   

5.
It is shown that a parametric resonance may arise in neutrino oscillations in varying electromagnetic fields. For two types of electromagnetic fields—an amplitude-modulated electromagnetic wave and a transverse magnetic field that is constant in time, but which has an amplitude periodically varying in space—the probabilities of the ν i ? ν j neutrino transitions are found, and it is shown that the probability amplitudes increase with time for a specific choice of the parameters of external electromagnetic fields.  相似文献   

6.
We discuss a six-dimensional SO(12) gauge theory which can be obtained from pure gravity in 18 dimensions coupled to a Majorana-Weyl spinor, if the ground state is characterized by a noncompact internal space without boundary with small finite volume. The six-dimensional SO(12) theory spontaneously compactifies to a four-dimensional SO(10) theory with local generation group SU(2)G × U(1)G. We obtain an even number of chiral fermion generations transforming as (16, k, ± 12) under SO(10) × SU(2)G × U(1)G. Adding a scalar field to the six-dimensional theory provides us with fields carrying all the quantum numbers needed for a realistic spontaneous symmetry breakdown to SU(3)c × U(1)e.m.  相似文献   

7.
A spinor Lagrangian invariant under global coordinate, local Lorentz and local chiral SU(n) × SU(n) gauge transformations is presented. The invariance requirement necessitates the introduction of boson fields, and a theory for these fields is then developed by relating them to generalizations of the vector connections in general relativity and utilizing an expanded scalar curvature as a boson Lagrangian. In implementing this plan, the local Lorentz group is found to greatly facilitate the correlation of the boson fields occurring in the spinor Lagrangian with the generalized vector connections.The independent boson fields of the theory are assumed to be the inhomogeneously transforming irreducible parts of the connections. It turns out that no homogeneously transforming parts are necessary to reproduce the chiral Lagrangian usually used as a basis for phenomenological field theories. The Lagrangian in question appears when the gravitational interaction is turned off. It includes pseudoscalar, spinor, vector, and axial vector fields, and the vector fields carry mass in spite of the fact that the theory is locally gauge invariant.  相似文献   

8.
Electrically charged solutions breaking half of the supersymmetry in Anti-de Sitter four dimensional N=2 supergravity coupled to vector supermultiplets are constructed. These static black holes live in an asymptotic AdS4 space time. The Killing spinor, i.e., the spinor for supersymmetry variation is explicitly constructed for these solutions.  相似文献   

9.
Systems of scalar and spinor particles that underwent mixing and which originated from external classical sources were investigated. Particle wave functions that take exactly into account external sources were obtained on the basis of solving Lorentz-invariant wave equations in four-dimensional space. Sources localized in space that emit harmonic radiation were considered. It was found that, owing to the presence of vacuum mixing, the scalar and spinor fields in question might oscillate—that is, go over to one another. It was shown that this phenomenon was analogous to neutrino flavor oscillations in a vacuum, since the calculated transition probabilities were coincidentwith their counterparts for neutrino oscillations. The situation of an arbitrarymassmatrix (that is, that which involved bothDirac andMajoranamass terms) was studied for the case of spinor-field evolution. The possibility of the appearance of antiparticles in a beam that originally involved only particles was analyzed. The question of whether the use of this method in describing neutrino flavor oscillations is legitimate was studied.  相似文献   

10.
M Carmeli  S Malin 《Annals of Physics》1977,103(1):208-232
The starting point is a spinor affine space-time. At each point, two-component spinors and a basis in spinor space, called “spin frame,” are introduced. Spinor affine connections are assumed to exist, but their values need not be known. A metric tensor is not introduced. Global and local gauge transformations of spin frames are defined with GL(2) as the gauge group. Gauge potentials Bμ are introduced and corresponding fields Fμν are defined in analogy with the Yang-Mills case. Gravitational field equations are derived from an action principle. Incases of physical interest SL(2, C) is taken as the gauge group, instead of GL(2). In the special case of metric space-times the theory is identical with general relativity in the Newman-Penrose formalism. Linear combinations of Bμ are generalized spin coefficients, and linear combinations of Fμν are generalized Weyl and Ricci tensors and Ricci scalar. The present approach is compared with other formulations of gravitation as a gauge field.  相似文献   

11.
12.
Quantum oscillations of the Hall resistance ρij(B) of bismuth bicrystals are investigated in magnetic fields up to 35 T. It is found that the twist low-angle internal boundary possesses n-type conductivity and comprises a central part and two adjacent layers, which are characterized by the specific features of the Fermi surface of electrons.  相似文献   

13.
We investigate a model in which spinors are considered as being embedded within the Clifford algebra that operates on them. In Minkowski space M1,3M1,3, we have four independent 4-component spinors, each living in a different minimal left ideal of Cl(1,3)Cl(1,3). We show that under space inversion, a spinor of one left ideal transforms into a spinor of another left ideal. This brings novel insight to the role of chirality in weak interactions. We demonstrate the latter role by considering an action for a generalized spinor field ψαiψαi that has not only a spinor index α but also an extra index i   running over four ideals. The covariant derivative of ψαiψαi contains the generalized spin connection, the extra components of which are interpreted as the SU(2) gauge fields of weak interactions and their generalization. We thus arrive at a system that is left–right symmetric due to the presence of a “parallel sector”, postulated a long time ago, that contains mirror particles coupled to mirror SU(2) gauge fields.  相似文献   

14.
The equations of conformal Killing transport are discussed using tensor and spinor methods. It is shown that, in Minkowski space-time, the equations for a null conformal Killing vector ξ a are completely determined by the corresponding spinor ω A and its covariant derivative, which defines a spinor π A′ . In conformally flat space-time, the covariant derivative of π A′ is also involved. Some applications to twistor theory are briefly mentioned.  相似文献   

15.
The procedure of averaging in an instanton medium in quarks with any number of flavors is discussed. It is shown that the effect of the instanton medium is equivalent to an interaction of light quarks with dynamically generated mass (four-quark interaction N f = 2) and massless bosonic spinor fields (ghosts). The fact that the instanton liquid is dilute makes it possible to use perturbation theory. The article is published in the original.  相似文献   

16.
A covariant theory is constructed of a spinor field in a space which is represented by the local topological product of a space Xn and a space of values of a geometrical object η. The covariant nonlinear spinor field theory constructed preserves the principles of the theory of the unified field and is compatible with the theory of gauge fields.  相似文献   

17.
N three-level atoms interact simultaneously with classical and quantum fields, which are in quasiresonance with various atomic transitions. The classical and quantum fields exchange photons by means of the atoms. It is shown that under certain conditions this process is collective. The number of photons in a quantized mode oscillates, and the amplitude of these oscillations is proportional to N 2. The frequency of the oscillations is determined by the frequencies of the classical and external fields.  相似文献   

18.
Neutrino oscillations ν iL ? ν jR in the field of a linearly polarized electromagnetic wave are studied on the basis of a recently proposed effective Hamiltonian that describes the evolution of a spin in an arbitrary electromagnetic field. The condition of resonance amplification of the oscillations is analyzed in detail. A method is developed for qualitatively studying solutions to the equation of neutrino evolution in the resonance region. This method can be used to explore neutrino oscillations in fields of various configurations.  相似文献   

19.
The nonlinear equation for an abstract noncanonical 2-component Weyl spinor field — as used with the inclusion of internal symmetries in Heisenberg's nonlinear spinor theory of elementary particles — which is invariant under scale, phase, and Poincaré transformations is modified in such a way as to become invariant under spacetime dependent phase gauge and Poincaré gauge transformations. In such an equation a phase gauge field B m , six Lorentz gauge fields A[]m and four translation gauge fields gm have to be introduced. It is demonstrated that all these fields can be identified as certain combinations of the Weyl spinor field, and hence should be considered in a rough sense as bound states of this spinor field. In particular the electromagnetic field Bm and the gravitational field g m appear as S-states and P-states of a spinor-antispinor system. The noncanonical property and the operator character of the spinor field is essential for this result. The relation between the translation gauge field and the spinor field involves a fundamental length. In a classical geometrical interpretation this relation leads to Einstein's equation of gravitation without cosmological term in a Riemannian space without torsion if the fundamental length is identified with Planck's length. It is shown that this equation is covariant under the larger symmetry group of phase gauge and Poincaré gauge transformations. The modified nonlinear equation constructed solely from a single 2-component Weyl field hence seems to incorporate in an extremely compact way electromagnetic and gravitational interaction in addition to non-mass-zero interactions. In this equation no arbitrary dimensionless constants enter. The considerations can be generalized to Dirac spinor fields and to spinor fields involving additional interior degress of freedom.An abridged version of this paper was presented at the International Conference on Gravitation and Relativity, Copenhagen, July 1971.  相似文献   

20.
The influence of a dc electric current I dc on the low-temperature magnetotransport of high-mobility electrons in a GaAs double quantum well with two occupied size-quantization levels has been studied. The oscillations of the resistance ρ xx , which are periodic in the inverse magnetic field, have been shown to appear in the quasitwo-dimensional system under consideration at a temperature of T = 4.2 K in magnetic fields B > 0.1 T; the oscillations are caused by isoenergetic resonance transitions of the electrons between the Landau levels of different subbands. The inversion of the oscillations with an increase in I dc has been discovered. It has been found that the observed effect is due to the electron transport in a nonlinear regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号