首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hassan SS  Elnemma EM  Hamada MA 《Talanta》1991,38(5):561-566
PVC matrix and liquid membrane electrodes have been developed for direct potentiometric determination of gold(III). The membranes incorporate nitron tetrachloroaurate(III) as electroactive material. Fast response for gold(III) over the concentration range 10(-5)-0.1M, with response slopes of 52.8-55.2 mV/decade is obtained. The electrodes show good selectivity for gold(III) at pH 2-5 in the presence of many anions and cations. The PVC membrane electrode offers the advantages of greater selectivity (except for Cr(3+), Mn(2+) and ClO(-)(4)) and higher thermal stability. The liquid membrane electrode gives a higher response slope and faster time of response than the PVC membrane electrode. Determination of AuCl(-)(4) over the range 2 mug/ml-2 mg/ml shows an average recovery of 98.5% and a mean standard deviation of 1.0%. Determination of gold in some gold alloys (58.3-99.9% Au) and pharmaceutical preparations gave an average recovery of 99.4% and a mean standard deviation of 0.7%, which are comparable with the performance obtained with the spectrophotometric Malachite Green and gravimetric U.S. Pharmacopeia methods.  相似文献   

2.
Abbaspour A  Moosavi SM 《Talanta》2002,56(1):91-96
The utility of carbon paste electrode modified with DTPT (3,4-dihydro-4,4,6-trimethyl-2(1H)-pyrimidine thione) for the potentiometric determination of Cu(II) in aqueous medium is demonstrated. The electrode exhibits linear response to Cu(II) over a wide concentration range (9.77x10(-7)-7.6x10(-2)) with Nernstian slope of 30+/-2 mV per decade. It has a response time of about 45 s and can be used for a period of two months with good reproducibility. The detection limit of this electrode was 7.0x10(-7) M. The proposed electrode shows a very good selectivity for Cu(II) over a wide variety of metal ions. This chemically modified carbon paste electrode was successfully used for the determination of Cu(II) in electronics waste sample solution.  相似文献   

3.
A novel membrane coated platinum-wire electrode (MCPWE) based on N,N'-bis(2-thienylmethylene)-1,2-diaminobenzene (BTMD) for highly selective determination of Ag+ ion has been developed. The influences of membrane composition and pH on the potentiometric responses of electrode were investigated. The potentiometric responses are independent of the pH of the test solution in the range of 5.0 - 9.0. The electrode shows a linear response for Ag+ ion over the concentration range of 1.0 x 10(-60 to 1.0 x 10(-1) M with a lower detection limit of 6.0 x 10(-7) M. The electrode possesses a Nernstian slope of 59.7 mV decade(-1) and a fast response time of < or = 17 s and can be used for at least 2 months without any observable deviation. The proposed electrode displayed very good selectivity for Ag+ ion with respect to NH4+ and alkali, alkaline earth and some common transition metal ions. The practical utility of the electrode has been demonstrated by its use as the indicator electrode in the potentiometric titration of an AgNO3 solution with a NaI solution and in determination of the silver content of a developed radiological film.  相似文献   

4.
A new heterogeneous precipitate of an organic-inorganic composite cation-exchanger poly-o-toluidine Zr(IV) phosphate was utilized for the preparation of a Hg(II) ion-sensitive membrane electrode for the determination of Hg(II) ions in real aqueous as well as in real samples. The electrode showed good potentiometric response characteristics, and displayed a linear log[Hg(2+)] versus EMF response over a wide concentration range of 1 x 10(-1) - 1 x 10(-6) M with a Nernstian slope of 30 mV per decade change in concentration with a detection limit of 1 x 10(-6). The membrane electrode showed a very fast response time of 5 s and could be operated well in the pH range 2 - 8. The selectivity coefficients were determined by the mixed-solution method, and revealed that the electrode was selective in the presence of interfering cations; however most of these did not show significant interference in the concentration range of 1 x 10(-1) - 1 x 10(-4) M. The lifetime of the membrane electrode was observed to be 120 days. The analytical utility of this electrode was established by employing it as an indicator electrode in the potentiometric titrations of Hg(2+) ions from a synthetic mixture as well as drain water.  相似文献   

5.
Zhuang Y  Zhang D  Ju H 《The Analyst》2005,130(4):534-540
A novel method for rapid, inexpensive, sensitive and selective determination of heroin was proposed by flow injection electrogenerated chemiluminescence (ECL). Zeolite Y sieves were used for the preparation of a ECL sensor by immobilizing tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) in their supercages, which was achieved through the ion exchange properties of the sieves. The electrochemical and ECL behaviors of Ru(bpy)3(2+) immobilized in zeolite Y modified carbon paste electrode was investigated. The immobilized Ru(bpy)3(2+) displayed a pair of surface-controlled redox peaks with an electron transfer rate constant of 1.2 +/- 0.1 s(-1) in 0.1 mol dm(-3) pH 6.3 phosphate buffer. The modified electrode showed an electrocatalytic response to the oxidation of heroin, producing a sensitized ECL signal. The ECL sensor showed a linear response to flow injection of heroin in the range of 2.0-80 micromol dm(-3) with a detection limit of 1.1 micromol dm(-3). This method for heroin determination possessed good sensitivity and reproducibility with a coefficient of variation of 1.99% (n = 15) at 50.0 micromol dm(-3). The ECL sensor showed good selectivity and long-term stability. Its surface could be renewed quickly and reproducibly by a simple polish step.  相似文献   

6.
A PVC-membrane electrode based on a recently synthesized 18-membered macrocyclic diamide is presented. The electrode reveals a Nernstian potentiometric response for Co2+ over a wide concentration range (2.0 x 10(-6)-1.0 x 10(-2) M). The electrode has a response time of about 10 s and can be used for at least 2 months without any divergence. The proposed sensor revealed very good selectivities for Co2+ over a wide variety of other metal ions, and could be used over a wide pH range (3.0-8.0). The detection limit of the sensor is 6.0 x 10(-7) M. It was successfully applied to the direct determination and potentiometric titration of cobalt ion.  相似文献   

7.
A highly selective poly(vinyl chloride) (PVC) membrane electrode based on an N,N'-ethylene-bis(4-methyl-salicylidineiminato) nickel(II) [Ni(EBMSI)] complex as a carrier for a thiocyanate-selective electrode is reported. The influences of the membrane composition, pH and possible interfering anions were investigated based on the response properties of the electrode. The electrode exhibited a good Nernstian slope of -58.9 +/- 0.7 mV decade(-1), over a wide pH range of 3.5 - 8.5 and a linear range of 1.0 x 10(-6) - 1.0 x 10(-1) M for thiocyanate. The detection limit of electrode was 3.1 x 10(-7) M SCN(-). The selectivity coefficients determined by a fixed interference method (FIM) indicate that a good discriminating ability towards the SCN- ion compared to other anions. The proposed sensor had a fast response time of about 5 - 15 s and could be used for at least 3 months without any considerable divergence in the potential. It was applied as an indicator electrode in the titration of thiocyanate with Ag+ and in the potentiometric determination of thiocyanate in saliva and urine samples.  相似文献   

8.
A nitrate-selective electrode based on a recently synthesized bis(2-hydroxyanil)acetylacetone lead(II) complex [(haacac)Pb] has been developed. Among different compositions studied, a membrane containing 30.7% poly(vinyl chloride) (PVC), 61.3% dibutyl phthalate (DBP) as a plasticizer, 3% methyltrioctylammonium chloride (MTOAC) as a cationic additive and 5% ionophore (all w/w) exhibited the best potentiometric response toward nitrate ion in aqueous solutions. The potentiometric response of the electrode was linear with a Nernstian slope of -58.8 mV decade(-1) within the NO3- concentration range of 2 x 10(-5)-1 x 10(-1) mol dm(-3). The response time of the electrode was < or =10 s over the entire linear concentration range of the calibration plot. The electrode is suitable for use within the pH range of 5.3-11. The selectivity coefficients for the proposed electrode were improved for some interferences, when compared with those of commercially available nitrate-selective electrodes.  相似文献   

9.
Cu2+ selective PVC membrane electrode based on new Schiff base 2, 2'-[1,9 nonanediyl bis (nitriloethylidyne)]-bis-(1-naphthol) as a selective carrier was constructed. The electrode exhibited a linear potential response within the activity range of 1.0 x 10(-6) - 5.0 x 10(-3) moll(-1) with a Nernstian slope of 29 +/- 1 mV decade(-1) of Cu2+ activity and a limit of detection 8.0 x 10(-7) mol l(-1). The response time of the electrode was fast, 10 s, and stable potentials were obtained within the pH range of 3.5- 6.5. The potentiometric selectivity coefficients were evaluated using two solution method and revealed no important interferences except for Ag+ ion. The proposed electrode was applied as an indicator electrode to potentiometric titration of Cu2+ ions and determination of Cu2+ content in real samples such as black tea leaves and multivitamin capsule.  相似文献   

10.
A PVC membrane incorporating p-tert-butyl calix[4]crown with imine units as an ionophore was prepared and used in an ion-selective electrode for the determination of mercury(II) ions. An electrode based on this ionophore showed a good potentiometric response for mercury(II) ions over a wide concentration range of 5.0 x 10(-5) - 1.0 x 10(-1) M with a near-Nernstian slope of 27.3 mV per decade. The detection limit of the electrode was 2.24 x 10(-5) M and the electrode worked well in the pH range of 1.3 - 4.0. The electrode showed a short response time of less than 20 s. The electrode also showed better selectivity for mercury(II) ions over many of the alkali (Na+, -1.69; K+, -1.54), alkaline-earth (Ca2+, -3.30; Ba2+, -3.32), and heavy metal ions (Co2+, -3.67; Ni2+, -3.43; Pb2+, -3.31; Fe3+, -1.82). Ag+ ion was found to be the strongest interfering ion. Also, sharp end points were obtained when the sensor was used as an indicator electrode for the potentiometric titration of mercury(II) ions with iodide and dichromate ions.  相似文献   

11.
Abbaspour A  Izadyar A 《Talanta》2001,53(5):1009-1013
A PVC-based membrane of 4-dimethylaminoazobenzene reveals a Nernstian potentiometric response (with slope of 19.5+/-0.6 mV/decade and a correlation coefficient of 0.999) for Cr(III) over a wide concentration range (1.66 x 10(-6)-1.0 x10(-2) mol dm(-3)). The potential of this electrode is independent of pH in the range of 3.0-5.5. It has a fast response time of about 10 s and was used for a period of 3 months with good reproducibility. The detection limits of this membrane electrode was 8 x 10(-7) M. the proposed electrode has been used as an indicator electrode in the potentiometric titration of Cr(III) with EDTA. This sensor exhibits a very good selectivities for Cr(III) over a wide variety of metal ions.  相似文献   

12.
A new PVC membrane mercury(II) ion electrode based on N,N-dimethylformamide-salicylacylhydrazone (DMFAS) as an ionophore is described, which shows excellent potentiometric response characteristics and displays a linear log[Hg(2+)] versus EMF response over a wide concentration range between 6.2 x 10(-7) and 8.0 x 10(-2) M with a Nerstian slope of 29.6 mV per decade and a detection limit of 5.0 x 10(-7) M. The response time for the electrode is less than 30 s and the electrode can be used for more than 2 months with less than a 2 mV observed divergence in a potentials. The proposed electrode exhibits very good selectivity for mercury(II) ions over many cations in a wide pH range (pH 1 - 4). The electrode was also applied to the determination of a mercury(II) ion in vegetables and in Azolla filiculoides.  相似文献   

13.
A liquid membrane electrode prepared with moclobemide-dipicrylamine ion-pair complex, dissolved in nitrobenzene as solvent, was studied for analytical performance. The linear response covers the range 10(-3)-10(-6) M moclobemide solution, with a slope of 50.7 mV decade(-1) (pH range 3.5-8). The detection limit is 3 x 10(-7) M. The electrode shows stability, good reproducibility and fast response. The selectivity of the electrode is good. There are two important interfering ions: mianserin and thiamine (Vitamin B(1)). The compression excipients (such as Mg(2+), starch, talcum powder) do not interfere. These characteristics of the electrode enabled it to be used for the determination of moclobemide in drugs and as an active substance, via indirect and direct potentiometric methods. Via an indirect potentiometric method moclobemide, as an active substance, can be determined with an average recovery of 99.96% and a relative standard deviation of 0.85%, and this method can also be used for its determination in drugs with a relative standard deviation of < 2%. The electrode is useful for the determination of the dissolution rate of moclobemide tablets. The physical processes are numerically simulated by typical equations. The apparent first-order rate constants for disintegration and dissolution were calculated.  相似文献   

14.
A coated-wire ion-selective electrode (CWISE), based on a Schiff base as a neutral carrier, was successfully developed for the detection of Pb(II) in aqueous solution. CWISE exhibited a linear response with a Nernstian slope of 29.4 +/- 0.5 mV/decade within the concentration range of 1.0 x 10(-5) - 1.0 x 10(-1) M lead ion. CWISE has shown detection limits of 5.0 x 10(-6) M. The electrode exhibited good selectivity over a number of alkali, alkaline earth, transition and heavy metal ions. This sensor yielded a steady potential within 10 to 20 s at a linear dynamic range. The electrode was suitable for use in aqueous solutions in a pH range of 2.0 to 5.0. Applications of this electrode for the determination of lead in real samples and as indicator electrode for potentiometric titration of Pb2+ ion using K2CrO4 are reported.  相似文献   

15.
A cobalt(II) derivative was used as a suitable ionophore for the preparation of a polymeric membrane nitrite-selective electrode. The electrode reveals a Nemstian behavior over a very wide NO2- ion concentration range (1.0 x 10(-6)-1.0 x 10(-1) M) and a very low detection limit (5.0 x 10(-7) M). The potentiometric response is independent of the pH of solution in the pH range 4.0-9.5. The electrode shows advantages such as low resistance, fast response and, most importantly, good selectivity relative to a wide variety of inorganic and organic anions. In fact, the selectivity behavior of the proposed NO2- ion-selective electrode shows great improvements compared to the previously reported electrodes for nitrite ion. The proposed electrodes could be used for at least 2 months without any significant changes in potentials. The electrode was successfully applied to the determination of nitrate ion concentrations in sausage and milk samples.  相似文献   

16.
A new PVC membrane ion selective electrode which is highly selective towards Ni(II) ions was constructed using a Schiff base containing a binaphthyl moiety as the ionophore. The sensor exhibited a good Nernstian response for nickel ions over the concentration range 1.0x10(-1)-5.0x10(-6) M with a lower limit of detection of 1.3x10(-6) M. It has a fast response time and can be used for a period of 4 months with a good reproducibility. The sensor is suitable for use in aqueous solutions in a wide pH range of 3.6-7.4 and works satisfactorily in the presence of 25% (v/v) methanol or ethanol. The sensor shows high selectivity to nickel ions over a wide variety of cations. It has been successfully used as an indicator electrode in the potentiometric titration of nickel ions against EDTA and also for the direct determination of nickel content in real samples: effluent samples, chocolates and hydrogenated oils.  相似文献   

17.
A highly selective poly(vinyl chloride)-based membrane sensor produced by using N,N-diethyl-N-(4-hydroxy-6-methylpyridin-2-yl)guanidine (GD) as active material is described. The electrode displays Nernstian behavior over the concentration range 7.0 x 10(-5) - 1.0 x 10(-1) M. The detection limit of the electrode is 5.0 x 10(-5) M. The best performance was obtained with the membrane containing 30% PVC, 55% benzyl acetate, 5% GD and 10% oleic acid. The response of the sensor is pH-independent in the range of 3.0 - 7.0. The sensor possesses satisfactory reproducibility, fast response time (< 20 s), and specially excellent discriminating ability for Eu(III) ion with respect to the alkali, alkaline earth, transition and heavy metal ions. The membrane sensor was used as an indicator electrode in potentiometric titration of Eu(III) ion with EDTA. It was also applied in determination of fluoride ions in mouth wash preparations.  相似文献   

18.
A plasticized Cr3+ ion sensor by incorporating 2,3,8,9-tetraphenyl-1,4,7,10-tetraazacyclododeca-1,3,7,9-tetraene (TTCT) ionophore exhibits a good potentiometric response for Cr3+ over a wide concentration range (1.0 x 10(-6)-1.0 x 10(-1) M) with a slope of 19.5 mV per decade. The sensor response is stable for at least three months. Good selectivity for Cr3+ in comparison with alkali, alkaline earth, transition and heavy metal ions, and minimal interference are caused by Li+, Na+, K+, Co2+, Hg2+, Ca2+, Pb2+ and Zn2+ ions, which are known to interfere with other chromium membrane sensors. The TTCT-based electrode shows a fast response time (15 s), and can be used in aqueous solutions of pH 3-5.5. The proposed sensor was used for the potentiometric titration of Cr3+ with EDTA and for a direct potentiometric determination of Cr3+ content in environmental samples.  相似文献   

19.
Dithiodibenzoic (DTB) acid and mercaptobenzoic (MB) acid were studied to characterize their abilities as modifier agents for lead(II) sensors. For both sensors, the best results were obtained with modified carbon paste electrodes with 24.1% of ligand. The pH influence on the potentiometric response was studied. The selectivity coefficients for both modified electrodes were tabulated. A potentiometric sensor based on DTB acid exhibited a more sensitive and selective response to lead ions than an MB electrode. The limits of detection for the DTB and MB electrodes were very similar, 5.01 x 10(-8) M and 3.98 x 10(-8) M, respectively, for lead(II) activity. The DTB sensor was applied to lead(II) ion determination in real samples and as an indicator electrode in potentiometric titrations. Natural and commercial humic acids were titrated using the DTB electrode to estimate the stability constant between these organic compounds and the lead(II) ions with successful results.  相似文献   

20.
《Analytical letters》2012,45(13):2611-2629
ABSTRACT

New potentiometric membranesensorsresponsive to Pb(II) have been developed. The membrane sensors are based on three different 9, 10-anthraquinone derivatives. The electrode based on 1, 4-bis (prop-21-enyloxy)-9, 10-anthraquinone exhibits a good Nernstian response for Pb(II) ions over a wide concentration range (2.5×10?6 - 1.0×10?2 M) with a slope of 29.8 mV decade?1. Detection limit is 1.5×10?6 M. The response time of the sensor is 15s and the useful working pH range is 4.7-6.8. The membrane can be used for more than 4 months without any considerable divergence in potentials. The electrodes revealed comparatively good selectivities with respect to alkali, alkaline earth and some transition and heavy metal ions. It was used as an indicator electrode in potentiometric titration of lead ions (with sulfate and oxalate ions), and for the determination of lead in waste waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号