首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study on weak anion exchangers was performed to investigate the pH dependence, binding strength, particle size distribution, and static and dynamic capacity of the chromatographic resins. The resins tested included: DEAE Sepharose FF, Poros 50 D, Fractogel EMD DEAE (M), MacroPrep DEAE Support, DEAE Ceramic HyperD 20, and Toyopearl DEAE 650 M. Testing was performed with five different model proteins: Anti-FVII mAb (immunoglobulin G), aprotinin, bovine serum albumin (BSA), Lipolase (Novozymes), and myoglobin. Retention showed an expected increasing trend as a function of pH for proteins with low pI. A decrease in retention was observed for some resins at pH 9 likely due to initiation of deprotonation of the weak anion-exchange ligands. Expected particle size distribution was obtained for all resins compared to previous studies. Binding strength to weak anion-exchange resins as a function of ionic strength depends on the specific protein. Binding and elution at low salt concentration may be performed with Toyopearl DEAE 650 M, while binding and elution at high salt concentration may be performed with MacroPrep DEAE Support. Highest binding capacities were generally obtained with Poros 50 D followed by DEAE Ceramic HyperD 20. A general good agreement was obtained between this study and data obtained by the suppliers. Verification of binding strength trends with model proteins was achieved with human growth hormone (hGH) and a hGH variant on the same resins with different elution salts, sodium chloride, sodium hydrogenphosphate, sodium sulphate, and sodium acetate. Static capacity measurements obtained in the traditional experimental set-up were compared with high-throughput screening (HTS) technique experiments with reasonable agreement. Isotherm data obtained from HTS techniques and pulse experiments were successfully combined with mathematical modelling to simulate, develop and optimise the separation process of two model proteins, Lipolase and BSA. The data presented in this paper may be used for selection of resins for testing in process development.  相似文献   

2.
Detailed studies on the sorption behavior of plasmids on anion exchangers are rare compared to proteins. In this study, we systematically compare the elution behavior of plasmid DNA on three common anion exchange resins using linear gradient and isocratic elution experiments. Two plasmids of different lengths, 8 and 20 kbp, were studied and their elution characteristics were compared to a green fluorescent protein. Using established methods for determining retention characteristics of biomolecules in ion exchange chromatography lead to remarkable results. In contrast to the green fluorescent protein, plasmid DNA consistently elutes at one characteristic salt concentration in linear gradient elution. This salt concentration was the same independent of plasmid size but differed slightly for different resins. The behavior is consistent also at preparative loadings of plasmid DNA. Thus, only a single linear gradient elution experiment is sufficient to design elution in a process scale capture step. At isocratic elution conditions, plasmid DNA elutes only above this characteristic concentration. Even at slightly lower concentrations most plasmids remain tightly bound. We hypothesize, that the desorption is accompanied by a conformational change leading to a reduced number of available negative charges for binding. This explanation is supported by structural analysis before and after elution.  相似文献   

3.
4.
Several prototypes of multi-modal ligands suitable for the capture of negatively charged proteins from high conductivity (28 mS/cm) mobile phases were coupled to Sepharose 6 Fast Flow. These new prototypes of multi-modal anion-exchangers were found by screening a diverse library of multi-modal ligands and selecting anion-exchangers resulting in elution of test proteins at high ionic strength. Candidates were then tested with respect to breakthrough capacity of BSA in a buffer adjusted to a high conductivity (20 mM Piperazine and 0.25 M NaCl, pH 6.0). The recovery of BSA was also tested with a salt step (from 0.25 to 2.0 M NaCl using 20 mM Piperazine as buffer, pH 6.0) or with a pH-step to pH 4.0. We have found that non-aromatic multi-modal anion-exchange ligands based on primary or secondary amines (or both) are optimal for the capture of proteins at high salt conditions. Furthermore, these new multi-modal anion-exchange ligands have been designed to take advantage not only of electrostatic but also hydrogen bond interactions. This has been accomplished through modification of the ligands by the introduction of hydroxyl groups in the proximity of the ionic group. Experimental evidence on the importance of the relative position of the hydroxyl groups on the ligand in order to improve the breakthrough capacity of BSA has been found. Compared to strong anion-exchangers such as Q Sepharose Fast Flow the new multi-modal weak anion-exchangers have breakthrough capacities of BSA at mobile phases of 28 mS/cm and pH 6.0 that are 20-30 times higher. The new multi-modal anion-exchangers can also be used at normal anion-exchange conditions and with either a salt step or a pH-step to acidic pH can accomplish the elution of proteins. In addition, the functional performance of the new anion-exchangers was found to be intact after treatment in 1.0 M sodium hydroxide solution for 1 week. A number of multi-modal anion-exchange ligands based on aromatic amines exhibiting high breakthrough capacity of BSA have been found. With these ligands recovery was often found to be low due to strong non-electrostatic interactions. However, for phenol derived anion-exchange media the recovery can be improved by desorption at high pH.  相似文献   

5.
Rational methods for predicting the chromatographic behavior of human monoclonal antibodies (hMabs) in protein A affinity chromatography and cation exchange chromatography from the amino acid sequences information were proposed. We investigated the relation between the structures of 28 hMabs and their chromatographic behavior in protein A affinity chromatography and cation exchange chromatography using linear gradient elution experiments. In protein A affinity chromatography, the elution pH of the hMabs was correlated with not only the structure of the Fc region (subclass), but also that of the variable region. The elution pH of hMabs that have LYLQMNSL sequences in between the CDR2 and CDR3 regions of the heavy chain became lower among the same subclass of hMabs. In cation exchange chromatography, the peak salt concentrations IR of hMabs that have the same sequences of variable regions (or that have a structural difference in their Fc region, which puts them into a subclass) were similar. The IR values of hMabs were well correlated with the equilibrium association constant Ke, and also with the surface positive charge distribution of the variable region of the heavy chain (corrected surface net positive charge (cN) of the VH region). Based on these findings, we developed rational methods for predicting the retention behavior, which were also tested with eight additional hMabs. By considering the information on the number of binding sites associated with protein adsorption as determined experimentally, and the surface positive charge distribution from the three-dimensional structure of Mab A, we hypothesized that hMabs is separated by cation exchange chromatography as the surface positive charge distribution of the VH region is recognized.  相似文献   

6.
A comparative study was performed on heparin resins and strong and weak cation exchangers to investigate the pH dependence, efficiency, binding strength, particle size distribution, static and dynamic capacity, and scanning electron microscopy pictures of chromatographic resins. The resins tested include: Heparin Sepharose FF, SP Sepharose FF, CM Sepharose FF, Heparin Toyopearl 650 m, SP Toyopearl 650 m, CM Toyopearl 650 m, Ceramic Heparin HyperD M, Ceramic S HyperD 20, and Ceramic CM HyperD F. Testing was performed with four different proteins: anti-FVII Mab (IgG), aprotinin, lysozyme, and myoglobin. Dependence of pH on retention was generally very low for proteins with high isoelectric point (pI), though some decrease of retention with increasing pH was observed for CM Ceramic HyperD F and S Ceramic HyperD 20. Binding of anti-FVII Mab with pI < 7.5 was observed on several resins at pH 7.5. Efficiency results show the expected trend of increasing dependence of the plate height with increasing flow rate of Ceramic HyperD resins followed by Toyopearl 650 m resins and the highest flow dependence of the Sepharose FF resins corresponding to their pressure resistance. Determination of particle size distribution by two independent methods, coulter counting and SEM, was in good agreement. Binding strength of cation-exchange resins as a function of ionic strength varies depending on the protein. Binding and elution at high salt concentration may be performed with Ceramic HyperD resins, while binding and elution at low salt concentration may be performed with model proteins on heparin resins. Employing proteins with specific affinity for heparin, a much stronger binding is observed, however, some cation exchangers may still be good substitutions for heparin resins. Dynamic capacity at 10% breakthrough compared to static capacity measurements and dynamic capacity displays that approximately 40-80% of the total available capacity is utilized during chromatographic operation depending on flow rate. A general good agreement was obtained between results of this study and data obtained by others. Results of this study may be used in the selection of resins for testing during protein purification process development.  相似文献   

7.
This work provides a broad survey of binding and elution behavior of proteins on strong cation exchangers. Four proteins comprising two monoclonal antibodies, lysozyme, and cytochrome c were used as models in the investigation. Seven chromatography resins with different base matrices were compared. Dynamic binding capacity as a function of salt concentration was examined for a monoclonal antibody and lysozyme. Elution behavior as a function of gradient slope was modeled to determine the characteristic charge, essentially a measure of the number of sites involved in binding, for each protein on each resin. Trends with respect to dynamic binding capacity and elution behavior are analyzed and discussed.  相似文献   

8.
A comparative study was performed on strong anion exchangers to investigate the pH dependence, titration curves, efficiency, binding strength, particle size distribution, and static and dynamic capacity of the chromatographic resins. The resins tested included Q Sepharose XL, UNO Q-1, Poros 50 HQ, Toyopearl QAE 550c, Separon HemaBio 1000Q, Q-Cellthru Bigbeads Plus, Q Sepharose HP and Toyopearl SuperQ 650s. Testing was performed with five different proteins: anti-Factor VII monoclonal antibody (immunoglobulin G), aprotinin, bovine serum albumin, lipolase and myoglobin. The dependence of pH on retention varies from generally low to very high for proteins with a low isoelectric point (pl). An unexpected binding at pH 7-8 of aprotinin with pI >11 was observed on Separon HemaBio 1000Q. No link between pH dependence on retention and titration curves of the different resins was observed. Efficiency results show the expected trend of higher dependence of the plate height with increasing flow-rate of soft resins compared to resins for medium- and high-pressure operation. No or a very small difference in particle size distribution was obtained between new and used resins. Binding to anion-exchange resins as a function of ionic strength varies to some extent depending on the specific protein. Generally, binding and elution at high salt concentration may be performed with Q Sepharose XL, Toyopearl QAE 550c, Q Sepharose HP and Poros 50 HQ, while binding and elution at low salt concentration may be performed with Q-Cellthru Bigbeads Plus. A very high binding capacity was obtained with Q Sepharose XL. Comparison of static capacity and dynamic capacity at 10% breakthrough shows approx. 50-80% utilization of the total available capacity during chromatographic operation. A general good agreement was obtained between this study and data obtained by the suppliers. The results of this study may be used for selection of resins for testing in process development.  相似文献   

9.
Cation exchange chromatography using conventional resins, having either diffusive or perfusive flow paths, operated in bind-elute mode has been commonly employed in monoclonal antibody (MAb) purification processes. In this study, the performance of diffusive and perfusive cation exchange resins (SP-Sepharose FF (SPSFF) and Poros 50HS) and a convective cation exchange membrane (Mustang S) and monolith (SO(3) Monolith) were compared. All matrices were utilized in an isocratic state under typical binding conditions with an antibody load of up to 1000 g/L of chromatographic matrix. The dynamic binding capacity of the cation exchange resins is typically below 100 g/L resin, so they were loaded beyond the point of anticipated MAb break through. All of the matrices performed similarly in that they effectively retained host cell protein and DNA during the loading and wash steps, while antibody flowed through each matrix after its dynamic binding capacity was reached. The matrices differed, though, in that conventional diffusive and perfusive chromatographic resins (SPSFF and Poros 50HS) demonstrated a higher binding capacity for high molecular weight species (HMW) than convective flow matrices (membrane and monolith); Poros 50HS displayed the highest HMW binding capacity. Further exploration of the conventional chromatographic resins in an isocratic overloaded mode demonstrated that the impurity binding capacity was well maintained on Poros 50HS, but not on SPSFF, when the operating flow rate was as high as 36 column volumes per hour. Host cell protein and HMW removal by Poros 50HS was affected by altering the loading conductivity. A higher percentage of host cell protein removal was achieved at a low conductivity of 3 mS/cm. HMW binding capacity was optimized at 5 mS/cm. Our data from runs on Poros 50HS resin also showed that leached protein A and cell culture additive such as gentamicin were able to be removed under the isocratic overloaded condition. Lastly, a MAb purification process employing protein A affinity chromatography, isocratic overloaded cation exchange chromatography using Poros 50HS and anion exchange chromatography using QSFF in flow through mode was compared with the MAb's commercial manufacturing process, which consisted of protein A affinity chromatography, cation exchange chromatography using SPSFF in bind-elute mode and anion exchange chromatography using QSFF in flow through mode. Comparable step yield and impurity clearance were obtained by the two processes.  相似文献   

10.
Increased upstream productivity and the continuous pressure to deliver high quality drug product have resulted in the development of new separation technologies and platform strategies for downstream purification processes of monoclonal antibodies (mAb). In this study, the separation attributes of three mixed-mode resins, Mercapto-Ethyl-Pyridine (MEP) hydrophobic charge induction resin, Capto adhere multi-modal anion exchange resin, and ceramic hydroxyapatite/fluoroapatite (CHT/CFT) resins, were investigated to define their roles in monoclonal antibody purification processes. We demonstrated that the multi-modal nature of ligands on mixed-mode resins allows the separation resolution to be honed, either through a single dominant mechanism or through mix-modal balanced purification strategies. In addition, the three mixed-mode resins present different purification powers for different types of impurities. We also demonstrated that besides enhancing chromatography separation and improve product quality, especially for high molecular weight (HMW) aggregate reduction, mixed-mode resins can also help to improve process efficiency in industrial-scale mAb drug manufacturing. Our results underscore the importance of selecting appropriate chromatography resins during DSP design to obtain the best overall process outcome.  相似文献   

11.
The effect of electrostatic and hydrophobic interactions on the chromatographic behavior of biopolymers with the use of chemically bonded silica-based HPLC columns and aqueous buffered mobile phases containing neutral salts in a wide range of concentration is discussed. Two columns packed with stationary phases appositely designed for biopolymer HPLC in size exclusion and anion exchange mode, respectively, are examined. Experimental data are evaluated by plotting the measured isocratic elution volumes of several standard proteins of different isoelectric point against the salt concentration in the mobile phase. Depending on the concentration and nature of salt, both columns exhibit different domains where either sieving effect or electrostatic or hydrophobic interactions are predominant. At sufficiently low salt concentrations electrostatic interactions are predominant leading to either increasing or decreasing elution volumes depending on the sign of the charges on the stationary phase and the protein, respectively. On the other hand, at high salt concentrations of a salt with sufficiently high molal surface tension increment proteins may be retained by hydrophobic interactions.  相似文献   

12.
Experiments with human serum albumin on the strong cation exchange resin Fractogel EMD SE Hicap (M) were carried out. Even though human serum albumin was used at high purity, two peaks in gradient elution experiments occurred. The obtained data can be explained by considering that human serum albumin binds to Fractogel EMD SE Hicap (M) in two different binding conformations: the protein adsorbs instantaneously in the first conformation and then changes into the second one with a kinetic limitation. The two-peak behavior of human serum albumin was analyzed in detail, especially at various gradient lengths, concentrations and temperatures. Breakthrough curves were performed at four modifier concentrations and three velocities. The characteristic adsorption behavior, found for gradient experiments, was confirmed by the breakthrough curves. The two-peak elution pattern of human serum albumin was also found for other strong cation exchange resins, but not for weak cation exchange resins. It is concluded that the described behavior is peculiar for the interaction of human serum albumin with the strong cation exchange ligand of the resin.  相似文献   

13.
Carbonaceous adsorbents are obtained by thermolysis of sulfonated macroreticular polystyrene ion exchange resins at 300-500°C. The hard, spherical, carbonaceous particles react exothermally with elemental chlorine to form products containing up to 38% Cl. The chlorinated particles react readily with polyamines to form anion exchange resins with capacities of up to 2.2 meq/g dry resin. Less than 60% of the nitrogen atoms in the particles are utilized as ion exchange sites. The carbonaceous particles can also be chloromethylated with chloromethyl methyl ether or chlorinated with sulfuryl chloride and then aminated with polyamines to form anion exchange resins, sulfonated with sulfuric acid or chlorosulfonic acid to form strongly acidic cation exchange resins, or chlorosulfonated and then aminated with polyamines to form anion exchange resins. Model structures of the thermolyzed resins containing polycyclic aromatic hydrocarbon fragments are proposed to explain their chemical reactivities.  相似文献   

14.
A comparative study was performed on strong cation-exchangers to investigate the pH dependence, efficiency, binding strength, particle size distribution, static and dynamic capacity, and SEM pictures of chromatographic resins. The resins tested included: SP Sepharose XL, Poros 50 HS, Toyopearl SP 550c, SP Sepharose BB, Source 30S, TSKGel SP-5PW-HR20, and Toyopearl SP 650c. Testing was performed with four different proteins: anti-FVII Mab (IgG), aprotinin, lysozyme, and myoglobin. Dependence of pH on retention was generally very low for proteins with high pI. An unexpected binding at pH 7.5 of anti-FVII Mab with pI < 7.5 was observed on several resins. Efficiency results show the expected trend of higher dependence of the plate height with increasing flow rate of soft resins compared to resins for medium and high-pressure operation. Determination of particle size distribution by two independent methods, Coulter counting and SEM, was in very good agreement. The mono-dispersed nature of Source 30S was confirmed. Binding to cation-exchange resins as a function of ionic strength varies depending on the specific protein. Generally, binding and elution at high salt concentration may be performed with Toyopearl SP 550c and Poros 50 HS, while binding and elution at low salt concentration may be performed with Toyopearl SP 650c. A very high binding capacity was obtained with SP Sepharose XL. Comparison of static capacity and dynamic capacity at 10% break-through shows in general approximately 50-80% utilisation of the total available capacity during chromatographic operation. A general good agreement was obtained between this study and data obtained by others. The results of this study may be used for selection of resins for testing in process development. The validity of experiments and results with model proteins were tested using human insulin precursor in pure state and in real feed-stock on Toyopearl SP 550c, SP Sepharose BB, and Toyopearl SP 650c. Results showed good agreement with experiments with model proteins.  相似文献   

15.
New non-destructive method for characterization of ion exchange chromatographic columns based on transient pH formed by a step change in ionic strength of buffer solutions was examined. The method was used to distinguish between cation and anion or weak and strong ion exchange chromatographic supports and to determine the capacity of the chromatographic resins. The general scheme to distinguish between most commonly used types of ion exchange chromatographic columns was proposed. The duration of pH transient was shown to be linearly proportional to the total ionic capacity and was used to estimate protein dynamic binding capacity of the resin. The effects of pH, concentration and temperature on transient pH duration were examined.  相似文献   

16.
Several prototypes of aromatic (Ar) and non-aromatic (NoAr) cation-exchange ligands suitable for capture of proteins from high conductivity (ca. 30 mS/cm) mobile phases were coupled to Sepharose 6 Fast Flow. These new prototypes of multi-modal cation-exchangers were found by screening a diverse library of multi-modal ligands and selecting cation-exchangers resulting in elution of test proteins at high ionic-strength. Candidates were then tested with respect to breakthrough capacity of bovine serum albumin (BSA), human IgG and lysozyme in buffers adjusted to a high conductivity. By applying a salt-step or a pH-step the recoveries were also tested. We have found that aromatic multi-modal cation-exchanger ligands based on carboxylic acids seem to be optimal for the capture of proteins at high-salt conditions. Experimental evidence on the importance of the relative position of the aromatic group in order to improve the breakthrough capacity at high-salt conditions has been found. It was also found that an amide group on the alpha-carbon was essential for capture of proteins at high-salt conditions. Compared to a strong cation-exchanger such as SP Sepharose Fast Flow the best new multi-modal weak cation-exchangers have breakthrough capacities of BSA, human IgG and lysozyme that are 10-30 times higher at high-salt conditions. The new multi-modal cation-exchangers can also be used at normal cation-exchange conditions and with either a salt-step or a pH-step (to pH-values where the proteins are negatively charged) to accomplish elution of proteins. In addition, the functional performance of the new cation-exchangers was found to be intact after treatment in 1.0 M sodium hydroxide solution for 10 days. For BSA it was also possible to design cation-exchangers based on non-aromatic carboxyl acid ligands with high capacities at high-salt conditions. A common feature of these ligands is that they contain hydrogen acceptor groups close to the carboxylic group. Furthermore, it was also possible to obtain high breakthrough capacities for lysozyme and BSA of a strong cation-exchanger (SP Sepharose Fast Flow) if phenyl groups were attached to the beads. Varying the ligand ratio (SP/Phenyl) could be used for optimizing the function of mixed-ligand ion-exchange media.  相似文献   

17.
对蛋白质在离子交换柱上选择民性和非吸附特性进行了研究。蛋白质在有机磷酸锆阳离子色谱柱上,其保留作用随流动相pH值在离子强度的增加而减小;蛋白质在强阳离子和强阴离子色谱柱上的保留作用,即是流动相中的pH值等于蛋白质的等当点,其净电荷为零。不册蛋白质仍有不同程度的保留,这主要是由于蛋白质的三维结构使电荷 密度的大小和分布的不均匀以及离子交换填料表面性质的影响。  相似文献   

18.
A library of cold shock protein B mutant variants was employed to examine differences in protein binding behavior in ion exchange and multimodal chromatography. Single site mutations introduced at charged amino acids on the protein surface resulted in a homologous protein set with varying charge density and distribution. The retention times of the mutants varied significantly during linear gradient chromatography in both systems. The majority of the proteins were more strongly retained on the multimodal cation exchange resin as compared to the traditional cation exchanger. Further, the elution order of the mutants on the multimodal resin was different from that obtained with the ion exchanger. Quantitative structure–property relationship models generated using a support vector regression technique were shown to provide good predictions for the retention times of protein mutants on the multimodal resin. A coarse-grained ligand docking package was employed to examine the various interactions between the proteins and ligands in free solution. The multimodal ligand was shown to utilize multiple interaction types to achieve stronger retention on the protein surface. The use of this protein library in concert with the qualitative and quantitative analyses presented in this paper provides an improved understanding of protein behavior in multimodal chromatographic systems.  相似文献   

19.
Refolding of proteins must be performed under very dilute conditions to overcome the competing aggregation reaction, which has a high reaction order. Refolding on a chromatography column partially prevents formation of the intermediate form prone to aggregation. A chromatographic refolding procedure was developed using an autoprotease fusion protein with the mutant EDDIE from the Npro autoprotease of pestivirus. Upon refolding, self-cleavage generates a target peptide with an authentic N-terminus. The refolding process was developed using the basic 1.8-kDa peptide sSNEVi-C fused to the autoprotease EDDIE or the acidic peptide pep6His, applying cation and anion exchange chromatography, respectively. Dissolved inclusion bodies were loaded on cation exchange chromatographic resins (Capto S, POROS HS, Fractogel EMD SO3, UNOsphere S, SP Sepharose FF, CM Sepharose FF, S Ceramic HyperD F, Toyopearl SP-650, and Toyopearl MegaCap II SP-550EC). A conditioning step was introduced in order to reduce the urea concentration prior to the refolding step. Refolding was initiated by applying an elution buffer containing a high concentration of Tris–HCl plus common refolding additives. The actual refolding process occurred concurrently with the elution step and was completed in the collected fraction. With Capto S, POROS HS, and Fractogel SO3, refolding could be performed at column loadings of 50 mg fusion protein/ml gel, resulting in a final eluate concentration of around 10–15 mg/ml, with refolding and cleavage step yields of around 75%. The overall yield of recovered peptide reached 50%. Similar yields were obtained using the anion exchange system and the pep6His fusion peptide. This chromatographic refolding process allows processing of fusion peptides at a concentration range 10- to 100-fold higher than that observed for common refolding systems.  相似文献   

20.
Protein adsorption equilibria and kinetics are obtained experimentally for two multimodal cation exchange resins—Nuvia cPrime, which is based on a polymeric matrix, and Capto MMC, which is based on an agarose matrix. In both resins, the ligand contains a phenyl group, a carboxyl group, and a peptide bond but with a different arrangement. Transmission electron microscopy and inverse size exclusion chromatography indicate a bimodal distribution of pores in Nuvia cPrime, including small pores with 10 nm radius and pores larger than 400 nm, and a monodispersed distribution of pores in Capto MMC, averaging 32 nm in radius. Potentiometric titration curves show similar buffering ranges and pK a values for the ligands in both resins and a slightly higher ligand density for Nuvia cPrime. Equilibrium binding capacities for lysozyme and a monoclonal antibody (mAb) are also similar for both resins at comparable pH and salt concentrations, although Capto MMC shows a weaker dependence on salt concentration as a result of its more hydrophobic character. The main difference is the adsorption kinetics of the mAb, which is the larger of the two proteins studied. For both resins, as shown by means of confocal laser scanning miscopy, the adsorption kinetics is controlled by pore diffusion. Capto MMC with its smaller pores has a slower rate of mass transfer than Nuvia cPrime. As a result, for the mAb, much higher column dynamic binding capacities are obtained for Nuvia cPrime than for Capto MMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号