首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The slow stage of phosphate or arsenate adsorption on hydrous metal oxides frequently follows an Elovich equation. The equation can be derived by assuming kinetic control by either a diffusion process (either interparticle or intraparticle) or a heterogeneous surface reaction. The aim of this study is to determine whether the slow stage of arsenic adsorption on goethite is more consistent with diffusion or heterogeneous surface reaction control. Adsorption kinetics of arsenate and dimethylarsinate (DMA) on goethite (alpha-FeOOH) were investigated at different pH values and inert electrolyte concentrations. Their adsorption kinetics was described and compared using Elovich (Gamma vs ln time) plots. Desorption of arsenate and DMA was studied by increasing the pH of the suspension from pH 4.0 to pH 10.0 or 12.0. The effective particle sizes and zeta-potential of goethite were also determined. Effective particle size increased rapidly as the pH approached pH(IEP), both in the absence and presence of arsenic. Inert electrolyte concentrations and pH had no effect on the slow stage of arsenate adsorption on goethite, while the kinetics of DMA adsorption on goethite was influenced by both parameters. The slow stage of arsenate adsorption on goethite follows an Elovich equation. Since effective particle size changes with both pH and inert electrolyte concentrations, and effective particle size influences interparticle diffusion, the arsenate adsorption kinetics indicate that the slow adsorption step is not due to interparticle diffusion. DMA also has complex adsorption kinetics with a slow adsorption stage. DMA desorbed completely and rapidly when the pH was raised, in contrast to the slow adsorption kinetics, indicating that the slow adsorption step is not due to intraparticle diffusion. The slow adsorption is not the result of diffusion, but rather is due either to the heterogeneity of the surface site bonding energy or to other reactions controlling arsenic removal from solution.  相似文献   

2.
This study reports thermodynamic and kinetic data of Sb(III) adsorption from single metal solutions onto synthetic aqueous goethite (alpha-FeOOH). Batch equilibrium sorption experiments were carried out at 25 degrees C over a Sb:Fe molar range of 0.005-0.05 and using a goethite concentration of 0.44 g Fe/L. Experimental data were successfully modelled using Langmuir (R2 > or = 0.891) and Freundlich (R2 > or = 0.990) isotherms and the following parameters were derived from triplicate experiments: Kf = 1.903 +/- 0.030 mg/g and 1/n = 0.728 +/- 0.019 for the Freundlich model and b = 0.021 +/- 0.003 L/mg and Qmax = 61 +/- 8 mg/g for the Langmuir model. The thermodynamic parameters determined were the equilibrium constant, Keq =1.323 +/- 0.045, and the Gibb's free energy, DeltaG0 = -0.692 +/- 0.083 kJ/mol. The sorption process is very fast. At a Sb:Fe molar ratio of 0.05, 40-50% of the added Sb is adsorbed within 15 min and a steady state is achieved. The experimental data also suggest that desorption can occur within 24 h of reaction due to the oxidation of Sb(III) on the goethite surface. Finally, calculated pH of the aqueous solution using MINTEQ2 agrees well with the measured pH (3.9 +/- 0.7; n = 30). At pH 4, the dominant Sb species in solution are Sb(OH)3 and HSbO2 which both likely adsorb as inner sphere complexes to the positively charged goethite surface.  相似文献   

3.
Replacement of one anion from goethite with another provides useful insight into the irreversible adsorption of the first added anion in a binary system. The objective of this study was to investigate the irreversible adsorption of dimethylarsinate (DMA), monomethylarsonate (MMA), arsenate, and phosphate onto goethite at pH 4 in phosphate and arsenic binary systems by adding two anions sequentially. The density of irreplaceable phosphate or arsenic on goethite decreases to a limit with an increase in the initial concentration of the other anion. This limit is the density of MMA, arsenate, and phosphate that irreversibly adsorbs onto goethite, which depends on the adsorption density of these species in the adsorption phase. The highest limit of phosphate that cannot be replaced with DMA, MMA, and arsenate is respectively 1.9, 0.5, 0.8 micromol m(-2). The limit of irreplaceable DMA is zero, and the highest limit of irreplaceable MMA and arsenate is 0.9 and 1.1 micromol m(-2), respectively. The results indicate that the irreversible adsorption of one specific anion in arsenic and phosphate binary systems is affected not only by the adsorption density of this anion before the addition of the other anion but also by the nature of the other.  相似文献   

4.
2H and 7Li MAS NMR spectroscopy techniques were applied to study the local surface and bulk environments of iron oxyhydroxide lepidocrocite (gamma-FeOOH). 2H variable-temperature (VT) MAS NMR experiments were performed, showing the presence of short-range, strong antiferromagnetic correlations, even at temperatures above the Néel temperature, T(N), 77 K. The formation of a Li+ inner-sphere complex on the surface of lepidocrocite was confirmed by the observation of a signal with a large 7Li hyperfine shift in the 7Li MAS NMR spectrum. The effect of pH and relative humidity (RH) on the concentrations of Li+ inner- and outer-sphere complexes was then explored, the concentration of the inner sphere complex increasing rapidly above the point of zero charge and with decreasing RH. Possible local environments of the adsorbed Li+ were identified by comparison with other layer-structured iron oxides such as gamma-LiFeO2 and o-LiFeO2. Li+ positions of Li+-sorbed and exchanged goethite were reanalyzed on the basis of the correlations between Li hyperfine shifts and Li local structures, and two different binding sites were proposed, the second binding site only becoming available at higher pH.  相似文献   

5.
The synthesis of AsF3(SO3F)2 by the reaction AsF3 + S2O6F2→AsF3(SO3F)2 is described. Various alternate routes leading to similar arsenic (V) fluoride-fluorosulfates are discussed. All materials are clear, viscous, strongly associated liquids of the general formula AsFn(SO3F)5?n, with n ranging from about 2 to 4. The presence of fluorosulfate bridges is ascertained by IR and Raman spectra.The spectroscopic investigation is also extended to arsenic (III) fluoride- fluorosulfates.  相似文献   

6.
2-Mercapto-N-2-naphtylacetamide (thionalide) on silica gel is used for differential preconcentration of μg l?1 levels of arsenic(III) and arsenic(V) from aqueous solution. In batch experiments, arsenic(III) was quantitatively retained on the gel from solutions of pH 6.5–8.5, but arsenic(V) and organic arsenic compounds were not retained. The chelating capacity of the gel was 5.6 μmol g?1 As(III) at pH 7.0. Arsenic retained on teh column was completely eluted with 25 ml of 0.01 M sodium borate in 0.01 M sodium hydroxide containing 10 mg l?1 iodine (pH 10). The arsenic was determined by silver diethyldithiocarbamate spectrophotometry. Arsenic(V) was subsequently determined after reduction to arsenic(III) with sulphite and iodide. Arsenic(III) and arsenic(V) in sea water are shown to be < 0.12 and 1.6 μg l?1, respectively.  相似文献   

7.
Extraction of arsenic(V) from sulfuric acid solutions with various extractants in multistage counter-current extraction-stripping systems was compared. The extraction ability of the extractants studied showed the following order: ENIM 100>TBP=CYANEX 923>2-methylhexanol. The extraction depends significantly on the number of extraction stages and the phase ratios in extraction. The effects of the number of stripping stages and the phase ratio in stripping are less important.  相似文献   

8.
Human poisoning and death from arsenic(As) have occurred as a result of drinking water contaminated with As in some regions and countries, such as Taiwan, Chile, Bangladesh, and In-dia[1]. Chronic arsenism poses a serious health problem in China also[2]. If China lowers its current drinking water standard of As from 0.05 to 0.01 mg/L[3], a level adopted by WHO[4] and some industrialized countries[5], the population affected will increase significantly. It is of great impor-tance to develo…  相似文献   

9.
Arsenic(III) can be extracted quantitatively from acidic media with ammonium pyrrolidinedithiocarbamate (APDC) and with diethyldithiophosphoric acid (HDEDTP). Arsenic-(V) can only be extracted after preliminary reduction to the trivalent state. Potassium iodide or a mixture of hydrogensulphite/thiosulphate is recommended. When the extraction is done once with and once without addition of reducing agent, the arsenic(III) and the arsenic(V) contents can be differentiated. Some bottled mineral waters were analyzed. All the arsenic present appears to be in the pentavalent state.  相似文献   

10.
11.
The solution conditions and other parameters affecting the ammonium pyrrolidine-dithiocarbamate—methyl isobutyl ketone extraction system for graphite-furnace atomic absorption spectrometric determination of As(III), As(V), Sb(III), Sb(V), Se(IV) and Se(VI) were studied in detail. The solution conditions for the single or simultaneous extraction of As(III), Sb(III) and Se(IV) were not critical. Arsenic(V) and Se(VI) were not extracted over the entire range of pH and acidity studied. Antimony(V) was extracted only in the acidity range 0.3—1.0 M HCl. Simultaneous extraction of total arsenic and total antimony was possible after reduction of As(V) with thiosulphate. Interference studies are also reported.  相似文献   

12.
Ficklin WH 《Talanta》1983,30(5):371-373
The predominant species of arsenic in ground water are probably arsenite and arsenate. These can be separated with a strong anion-exchange resin (Dowex 1 x 8; 100-200 mesh, acetate form) in a 10 cm x 7 mm column. Samples are filtered and acidified with concentrated hydrochloric acid (1 ml per 100 ml of sample) at the sample site. Five ml of the acidified sample are used for the separation. At this acidity, As(III) passes through the acetate-form resin, and As(V) is retained. As(V) is eluted by passage of 0.12M hydrochloric acid through the column (resulting in conversion of the resin back into the chloride form). Samples are collected in 5-ml portions up to a total of 20 ml. The arsenic concentration in each portion is determined by graphite-furnace atomic-absorption spectrophotometry. The first two fractions give the As(III) concentration and the last two the As(V) concentration. The detection limit for the concentration of each species is 1 mug l .  相似文献   

13.
Trivalent and pentavalent arsenic were incubated with sulfur-containing amino acid, peptide and protein solutions both as organic compounds (phenylarsine oxide, phenylarsonic acid, dimethylarsinic acid, monomethylarsonic acid) and as inorganic compounds (arsenite, As(III), and arsenate, As(V)). After incubation of phenylarsine oxide solutions with cysteine and glutathione the mass spectra showed a covalent bond between arsenic and sulfur, which was stable at both acidic and neutral pH values. The mass spectra were dominated by monovalent ions at m/z 272 for cysteine samples and at m/z 458 for glutathione samples. Based on these masses the ionic structures could be ascribed to either fragment ions of the covalent arsenic-sulfur complexes or to other arsenic-bonding sites presumably at the amino group. Interestingly, under the same conditions no interactions of inorganic arsenite or arsenate could be measured. In the presence of added Cu(2+) ions all mass signals caused by a reaction of phenylarsine oxide with glutathione disappeared. In these mass spectra only the oxidised form of glutathione (GSSG) was found because of the redox activity of Cu(II). For the model protein lysozyme, no interactions with arsenic could be detected, whereas definite Cu- and Zn-lysozyme complexes with a stoichiometry of 1:1 and 2:1 for Zn(2+) ions and Cu(2+) ions, respectively, were observed. In contrast, for thioredoxin a bonding of As that depended on the concentration of the disulfide-reducing agent tris(2-carboxyethyl) phosphine was demonstrated.For three different phenylarsonic acids and for dimethylarsinic acid that all contain pentavalent arsenic, complexes with glutathione appeared in the mass spectra, which can be attributed to non-covalent interactions or to a covalent bond caused by an additive reaction.The optimisation of the experimental conditions necessary for the mass spectrometric analysis of the interactions of the arsenic species with peptides and proteins is described and the obtained mass spectra that provide information on the kinds of bonds are discussed.  相似文献   

14.
Tetraphenylbismuth(V) derivatives of the general formula Ph4BiX [X = OSO2C6H4Me-4, OC6H2(NO2)3-2,4,6, OC6H2(NO2-4)(Br2-2,6), OSO2C6H3(OH)(COOH)] react with methyl acrylate in the presence of palladium dichloride (1:3:0.04 molar ratio) in acetonitrile at 20°C to form the cross-coupling products, methyl cinnamate (0.17–0.54 mol mol?1 starting bismuth compound) and methylhydrocinnamate (0.10–0.73 mol mol?1), diphenyl (0.06–0.80 mol mol?1), and benzene (0.02–0.36 mol mol?1). The highest C-phenylating activity is shown by Ph4BiOSO2C6H4Me-4. The mechanisms with the palladium-catalyzed cross-coupling reactions are suggested.  相似文献   

15.
Procedure for obtaining new hybrid sorbents based on carbon fibers and chitosan-carbon materials modified with molybdenum, which determines the affinity of the sorbents for arsenate ions, is described. The surface morphology was examined and a qualitative chemical analysis of the surface of the composite sorbents was made by the method of scanning electron microscopy–energy-dispersive analysis. Sorption isotherms were obtained for unmodified materials, carbon fibers and chitosan-carbon materials, and hybrid sorbents in twicedistilled and tap water at low As(V) concentrations.  相似文献   

16.
Jitmanee K  Oshima M  Motomizu S 《Talanta》2005,66(3):529-533
A novel and simple flow-based method was developed for the simultaneous determination of As(III) and As(V) in freshwater samples. Two miniature columns with a solid phase anion exchange resin, placed on two 6-way valves were utilized for the solid-phase collection/concentration of arsenic(III) and arsenic(V), respectively. As(III) could be retained on the column after its oxidation to As(V) species with an oxidizing agent. The collected analytes were then sequentially eluted by 2 M nitric acid and introduced into ICP-AES. Potassium permanganate was examined as potential oxidizing agent for conversion of As(III) to As(V). The standard deviation of the analytical signals (peak height) for the replicate analysis (n = 5) of 0.5 μg l−1 solution were 3 and 5% for As(III) and As(V), respectively. The limit of detection (3σ) for both As(III) and As(V) were 0.1 μg l−1. The proposed system produced satisfactory results on the application to the direct analysis of inorganic arsenic species in freshwater samples.  相似文献   

17.
The methylsulfonylethoxymethyl (Msem) is introduced as a base-labile, non-participating protecting group in carbohydrate chemistry. Conditions to introduce the Msem on primary and secondary alcohols are described. Removal of the Msem is best achieved using a catalytic amount of tetrabutylammonium fluoride (TBAF), with or without a nucleophilic scavenger. Applicability of the Msem group is illustrated in the assembly of an all 1,3-cis-linked mannotrioside.  相似文献   

18.
19.
A procedure is described for the sequential determination of arsenite and arsenate in samples of natural waters. It is based on the extraction of arsenic(III) with ammonium sec-butyl dithiophosphate and measurement, after re-extraction into water, by graphitefurnace atomic absorption spectrometry. Reduction of arsenic(V) allows its subsequent determination. The method is applied to fresh and sea water samples. The detection limit is 6 ngl-1.  相似文献   

20.
[reaction: see text] Intramolecular nitrile oxide-alkene cycloaddition (INOC) of sugar derivatives with one to four free hydroxyl group(s) is reported. The INOC reaction, using chloramine-T, in the presence of silica gel, to generate nitrile oxides from oximes, proceeded smoothly to afford five- or six-membered carbocycles in good to excellent yields. This new methodology alleviates protection/deprotection steps and makes the synthetic route shorter and more efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号