共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Microemulsion polymerization of styrene using a polymerizable nonionic surfactant and a cationic surfactant 总被引:9,自引:0,他引:9
High polymer/surfactant weight ratios (up to about 15:1) of polystyrene microlatexes have been successfully produced by microemulsion
polymerization using a small amount of polymerizable surfactant, ω-methoxypoly(ethylene oxide)40 undecyl α-methacrylate macromonomer (PEO-R-MA-40), and cetyltrimethylammonium bromide (CTAB). After generating “seeding particles”
in a ternary microemulsion containing only 0.2 wt% CTAB and 0.1 wt% styrene, the additional styrene containing less than 1 wt%
PEO-R-MA-40 was added dropwise to the polymerized microemulsion for a period of about 4 h at room temperature. PEO-R-MA-40
copolymerized readily with styrene. The stable microlatexes were bluish-transparent at a lower polymer content and became
bluish-opaque at a higher polymer content. Nearly monodisperse latex particles with diameters ranging from 50 to 80 nm and
their molar masses ranging from 0.6 to 1.6 × 106 g/mol could be obtained by varying the polymerization conditions. The dependence of the number of particles per milliliter
of microlatex, the latex particle size and the copolymer molar mass on the polymerization time is discussed in conjunction
with the effect of the macromonomer concentration.
Received: 25 October/2000 Accepted: 2 February 2001 相似文献
5.
The kinetics of deswelling of sodium polyacrylate microgels (radius 30-140 microm) in aqueous solutions of dodecyltrimethylammonium bromide is investigated by means of micropipet-assisted light microscopy. The purpose of the study is to test a recent model (J. Phys. Chem. B 2003, 107, 9203) proposing that the rate of the volume change is controlled by the transport of surfactant from the solution to the gel core (ion exchange) via the surfactant-rich surface phase appearing in the gel during the volume transition. Equilibrium swelling characteristics of the gel network in surfactant-free solutions and with various amounts of surfactant present are presented and discussed with reference to related systems. A relationship between gel volume and degree of surfactant binding is determined and used in theoretical predictions of the deswelling kinetics. Experimental data for single gel beads observed during deswelling under conditions of forced convection are presented and compared with model calculations. It is demonstrated that the dependences of the kinetics on initial gel size, the surfactant concentration in the solution, and the liquid flow rate are well accounted for by the model. It is concluded that the deswelling rates of the studied gels are strongly influenced by the mass transport of surfactant between gel and solution (stagnant layer diffusion), but only to a minor extent by the transport through the surface phase. The results indicate that, during the volume transition, swelling equilibrium (network relaxation/transport of water) is established on a relatively short time scale and, therefore, can be treated as independent of the ion-exchange kinetics. Theoretical aspects of the kinetics and mechanisms of surfactant transport through the surface phase are discussed. 相似文献
6.
The pressure-induced phase transition in a microemulsion, consisting of pentaethylene glycol mono-n-dodecyl ether, water, and n-octane, was investigated by means of small-angle neutron scattering. A pressure-induced phase transition from a lamellar structure to a hexagonal structure was observed. The temperature-pressure phase boundary shows a positive slope with dTdP approximately 0.09 KMPa. The structure unit of the high-pressure hexagonal phase was an oil-in-water cylinder with the membrane thickness of 15.5 A, identical to the low-temperature hexagonal phase. Pressurizing was found to have the same effect by decreasing temperature. This behavior was satisfactorily explained with the pressure dependence of the spontaneous curvature of surfactant membranes. That is, the volume change of surfactant tails plays a dominant role in the structure change of the microemulsion with applying pressure. 相似文献
7.
DOSY is a recognized, efficient technique in the analysis of mixtures. It relies on the differences in self-diffusion coefficients, which are determined by the molecular size. Nowadays, efforts are directed towards devising matrices able to interact with the components of the mixture with differential affinity, and therefore capable to interfere with the diffusion processes and to display resolving power towards species of close, or even equal molecular weight, like isomers. Usually, commercial nonionic surfactants are mixtures of oligomeric species, since the head group, which is a short polyoxyehtylene chain, is somewhat polydisperse. The embedment of Igepal CA-520, 5 polyoxyethylene iso-octylphenyl ether, in an inverse microemulsion led to the separation of (1)H signals of the various oligomeric components. This ensued from the differential partitioning between the oil and the surface of the inverse micelles, which depends on the ethyleneoxide number (EON) of the head groups. Thus, it was possible to ascertain that the length distribution of the polyethyleneoxide chains is ingood agreement with the Poisson distribution theoretically predicted for the polymerization of ethylene oxide. The DOSY spectrum contributed to the assignment of the signals and afforded the partition degree, between the two environments, for each individual oligomeric species, providing further insight into nonionic inverse microemulsions, at present widely employed reaction media in the nanotechnological syntheses. 相似文献
8.
Ilaria Calabrese Giuseppe Cavallaro Giuseppe Lazzara Marcello Merli Luciana Sciascia Maria Liria Turco Liveri 《Adsorption》2016,22(2):105-116
The present study was aimed at the preparation and characterization of tailor made hybrid materials, whose peculiar hosting capability could be exploited in biotechnological applications. With this purpose, the modification of K10 montmorillonite by intercalation of Tween 20 surfactant, was accomplished. The influence of two internal parameters, namely pH and surfactant/clay ratio, on the surfactant uptake ability by clay was investigated. The adsorption mechanism was elucidated on the basis of complementary kinetic and equilibrium studies and, then, corroborated by the useful information provided by the FT-IR, TGA and XRD characterization. The gathered results allow to draw the conclusion that the whole surfactant uptake is the result of two contributions: a site-limiting component, governed by negative cooperative interactions, which takes into account for the Tween 20 adsorption onto the pristine clay, and a non-specific linear partitioning component, related to the adsorption of the surfactant onto the in situ prepared organo-clay. Moreover, at strongly acidic pH, a mechanism consisting of two-steps pathways involving two non-energetically equivalent binding sites of the clay surfaces, was proposed, while, on increasing the pH, the clay interlayer becomes the sole available site for the surfactant uptake. In the light of the interesting results obtained, among the plethora of potential biotechnological applications, the present paper suggests the exploitation of the prepared organo-clays to improve the performance of either hydrophilic or hydrophobic drug carriers systems. 相似文献
9.
《Current Opinion in Colloid & Interface Science》2008,13(6):413-428
This review outlines major developments in the characterization of functionalized microgel morphologies, highlighting the use of kinetic and thermodynamic modeling to predict microgel morphologies and compositional gradients, the characterization of near-surface regions of microgels using atomic force microscopy and cryo-transmission electron microscopy, the fitting and interpretation of neutron scattering profiles of microgels, and the application of macroscopic phase transition measurements to microstructure analysis. 相似文献
10.
Homopolymerization of acrylamide as well as that of methyl methacrylate and the copolymerization of acrylamide with methyl methacrylate and/or styrene in inverse microemulsion toluene/water 10: 1 by weight have been studied. Water-soluble ammonium peroxodisulfate, partially water-soluble 2,2′-azobisisobutyronitrile, and oil-soluble dibenzoyl peroxide were used for initiation of these polymerizations at 60°C. Redox initiation system consisting of ammonium peroxodisulfate and tetramethylethylenediamine has been used for an effective initiation of the reactions studied at 30°C. Polymerizations in inverse microemulsions were found start in the interlayer oil macrophase/water microphase. The initial rates of copolymerizations reactions studied depended only on the comonomer mixture composition. The type of the initiator used affected only the exhibited inhibition period. 相似文献
11.
The chemical potential of a surfactant in solution can be calculated from the Gibbs adsorption equation when the surface excess of the surfactant and the surface tension of the solution as a function of surfactant concentration are known. We have investigated a solution of the nonionic surfactant 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the polar solvent 3-hydroxypropionitrile at concentrations below and above the critical micelle concentration (cmc). Neutral impact collision ion scattering spectroscopy was applied for the direct measurement of the surface excess of POPC as a function of concentration. The Gibbs adsorption equation was applied in conjunction with surface tension measurements to evaluate the chemical potential and the activity coefficients of POPC, respectively. We find that the solution shows ideal behavior up to the cmc and that the chemical potential remains constant at concentrations larger than the cmc. 相似文献
12.
Three-phase behavior in a mixed nonionic surfactant system 总被引:1,自引:0,他引:1
The effect of monodisperse solubilities of each surfactant in an excess oil phase on the three-phase behavior was investigated in a water/octaethyleneglycol dodecyl ether (R12EO8)/tetraethyleneglycol dodecyl ether (R12EO4)/heptane system. The mid temperature of the three-phase region is defined as the HLB temperature. The HLB temperature is largely skewed to higher temperature in a dilute region due to the difference in the distribution of each surfactant between excess oil and microemulsion (surfactant) phases forming the three-phase body. Taking account of the monodisperse solubilities, the equation for the HLB temperature was obtained on the basis of geometrical calculation of a particular three-phase triangle. The equation well describes the three-phase behavior for a mixed surfactant system in a space of compositions and temperature.In the mixed surfactant system, the monodisperse solubility of R12EO8 in oil phase forming a three-phase body is monotonously increased with the rise in temperature, whereas that of R12EO4 is first increased and then is decreased. Consequently, the sum of both solubilities does not change greatly in a wide range of temperature. 相似文献
13.
A method for the separation of twelve monomethyl-substituted benz[a]anthracene isomers using poly-(sodium undecylenic sulfate) (poly-SUS) surfactant by means of electrokinetic capillary chromatography (EKC) is described. Several parameters such as concentration of acetonitrile (ACN), pH, as well as applied voltage were studied to optimize the EKC separation. ACN at a concentration of 35% v/v, 12.5 mM phosphate-borate buffer, 30 kV with 0.5% w/v poly-SUS at a pH of 9.5 provided a resolution of a mixture of nine out of twelve methylbenz[a]anthracene (MBA) isomers in 50 min. The results of this study suggest that molecular length of MBA rather than length-to-breath ratio plays an important role in the elution order of some isomers. 相似文献
14.
Yinghua Shen Xiangying Zhang Jianjun Lu Aiqin Zhang Kai Chen Xiaoqin Li 《Colloids and surfaces. A, Physicochemical and engineering aspects》2009,350(1-3):87-90
In this research, a series of pH-responsive microgels based on acrylamide (AM), acrylic acid (AA) as the main monomers, and N,N′-methylenebisacrylamide as a divinyl cross-linking agent, have been prepared by inverse microemulsion polymerization. The effect of chemical composition of poly(acrylamide-co-acrylic acid) (P(AM-co-AA)) on hydrodynamic diameters, morphology, swelling ratios and pH-responsive behaviour and thermal properties of microgels were discussed. With an increase of the mole percentages of AA in the feed ratio, the microgels have higher swelling ratios. The TEM photographs show that the spherical morphology of the microgels are regular relatively. Comparing with PAM microgels, number-average diameters of P(AM-co-AA) microgels were larger because of the presence of AA chain segment in the polymer chain. Turbidities of microgels determined through UV–vis spectrophotometer indicate that the microgels exhibit favourable pH-responsive behaviour, and responsive pH value is related to the dissociation constant of AA. Moreover, thermal stable properties of microgels were confirmed by differential scanning calorimeter. It was observed that an increase in the mole percentages of AA in the feed ratio provided lower glass transition temperature and thermal decomposition temperature of pH-responsive microgels. 相似文献
15.
The effect of polyelectrolyte addition on the properties of an oil-in-water (O/W) microemulsion of weakly charged spherical micelles is studied. The 81 A radius O/W droplets in this system can be charged by the partial substitution of the nonionic surfactant by a cationic surfactant. The effect of the addition of poly(acrylic acid) (PAA), which is a charged pH-dependent polyelectrolyte, on the interactions between charged or noncharged droplets has been investigated using SANS. We have characterized the phase behavior of this pH-smart system as a function of the microemulsion and the polyelectrolyte concentration and the number of charges per droplet at three pH values: pH = 2, 4.5, and 12. In particular, an associative phase separation due to the bridging of the droplets by the neutral PAA chains through H-bonds is observed with extremely low PAA addition at low pH. At the opposite, an addition of PAA at pH = 4.5 generates a strong repulsive contribution between neutral droplets. Electrostatic bonds between charged droplets and PAA, controlled by the number of charges per droplet, are responsible for a pH drift and then for an associative phase separation similar to that observed at low pH. Finally, at high pH, the creation of electrostatic bonds between fully charged PAA and charged droplets liberates sufficiently counterions in solution at high droplet charge density to screen the electrostatic interactions and to allow an associative phase separation. 相似文献
16.
17.
When heating a dilute sample of the binary system of tetraethyleneglycol dodecyl ether (C12E4) and water from the micellar phase (L1) into the two-phase region of a lamellar phase (L(alpha)), and excess water (W) vesicles are formed. During heating, one passes a region of phase separation in the micellar phase (L1' + L1') where the initial micelles rapidly fuse into larger aggregates forming the concentrated L1 phase (L1') with a structure of branched cylindrical micelles, a so-called "living network". The static correlation length of the micelles are increasing with increasing concentration, from ca. 10 nm to 80 nm in the concentration range of 0.0001 g/cm3-0.0035 g/cm3. The overlap concentration was determined to 0.0035 g/cm3. When the temperature reaches the L1' + L(alpha) region the network particles transform into bilayer vesicles with a z-average apparent hydrodynamic radius in the order of 200 nm depending on the composition. The size of the final vesicles depends on the extent of aggregation/fusion in the L1' + L1' region and hence on the rate of heating. The aggregation/fusion in the L1' + L1' is slower than diffusion-limited aggregation, and it is shown that 1/100 of the collisions are sticky results in the fusion event. 相似文献
18.
Measurements of the advancing contact angle (theta) were carried out for an aqueous solution of p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycol)s (Triton X-100 (TX100) and Triton X-165 (TX165) mixtures) on polytetrafluoroethylene (PTFE). The obtained results indicate that the wettability of PTFE depends on the concentration and composition of the surfactant mixture. The minimum of the dependence between the contact angle and composition of the mixtures for PTFE for each concentration at a monomer mole fraction of TX100, alpha = 0.8, points to synergism in the wettability of PTFE. This effect was confirmed by the negative values of interaction parameters calculated on the basis of the contact angle and by the Rosen approach. In contrast to Zisman, there was no linear dependence between cos theta and the surface tension of an aqueous solution of TX100 and TX165 mixtures for all studied systems, but a linear dependence existed between the adhesional tension and surface tension for PTFE over the whole concentration range, the slope of which was -1, indicating that the surface excess of the surfactant concentration at the PTFE-solution interface was the same as that at the solution-air interface for a given bulk concentration. Similar values of monomer mole fractions of the surfactants at water-air and PTFE-water interfaces calculated on the basis of the surface tension and contact angles showed that adsorption at these two interfaces was the same. It was also found that the work of adhesion of an aqueous solution of surfactants to the PTFE surface did not depend on the type of surfactant and its concentration. This means that for the studied systems the interaction across the PTFE-solution interface was constant and was largely of Lifshitz-van der Waals type. On the basis of the surface tension of PTFE, the Young equation, and the thermodynamic analysis of the adhesion work of an aqueous solution of surfactant to the polymer surface, it was found that in the case of PTFE the changes in the contact angle as a function of the mixture concentration of two nonionic surfactants resulted only from changes in the polar component of the solution surface tension. 相似文献
19.
The behavior of two charged polymer networks in a solution of an oppositely charged surfactant was studied. It was shown that such a system (depending on preset parameters) can exist in different modes: without micelles in both networks, with micelles in one of the network, and with micelles in both networks. The dependences of network dimensions and ion concentrations inside the networks on the surfactant concentration in the solution, the fraction of charged units in one of the networks, and the relative size of the system were obtained. It is possible to affect the state of one network by varying the parameters (e.g., the proportion of charged units) of the other network. Different network swelling scenarios depending on the relative size of the system and the fraction of charged network units were revealed. 相似文献