首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-assembly of a polyprotic pentadentate ligand, N-cyclopentanoylaminobenzoylhydrazide (H(4)L(4)), and an In(III) nitrate hydrate in methanol led to a strained hexanuclear indium metal-organic macrocycle (In-MOM), [In(III)(6)(H(2)L(4))(6)(NO(3))(x)(solvent)(6-x)](NO(3))(6-x) (where, the solvent is either methanol or a water molecule and x is the number of the nitrate anions ligated). The ligand in the doubly deprotonated state serves as an unsymmetric linear ditopic donor and the alternating indium ions in two different chelation modes serve as two different bent ditopic metal acceptors, which led to a D(3)-symmetric hexanuclear In-MOM. Although the hexanuclear In-MOM is enthalpically unfavorable because of the ring strain, the combination of the soft coordination characteristic of the indium ion and the slight ligand deformation from the conjugated planar conformation allows the formation of the entropically favored hexanuclear In-MOM rather than the enthalpically favored octanuclear In-MOM. While the hexanuclear In-MOM is stable in acetonitrile, it partially dissociates into its components in dimethylsulfoxide, and then slowly reaches a new equilibrium state with several different indium species yet to be identified in addition to the free ligand.  相似文献   

2.
Ligands based on carbo- and thio-carbohydrazone cores, modified with pyridine, carboxylate and oxime ends, have been examined. They display a tautomeric versatility based on the flexible nature of the hydrazone linkages, leading to varied coordination motifs. Examples of mononuclear (Co(II), Ni(II)), dinuclear (Co(III)), 1D chain (Cu(II)) and square [2 × 2] grid (Ni(II)) complexes are obtained. Ferromagnetic (Cu(II)) and antiferromagnetic (Ni(II)) exchange is observed, with spin coupling in the Ni(II)(4) square grids propagated through the μ-O and μ-S bridges. Weak antiferromagnetic exchange (J = -6.0 cm(-1)) is observed for the μ-O bridged grid, despite the large Ni-O-Ni angles (137-141°), while for the μ-S bridged grids much stronger exchange is observed (J = -148 cm(-1), -198 cm(-1)). This is much larger than expected based on the Ni-S-Ni bridge angles (151-169°), and is associated with the soft (less polarizing than oxygen) nature of the sulfur bridge, which would allow for much more efficient transmission of spin exchange than observed in the μ-O bridged case. Structures and variable temperature magnetic data are included, and spin exchange is analyzed using normal Heisenberg exchange models. No examples involving oxime (NO) bridging are reported, which reflects the positioning of the N,O and N,S donor combinations in each ligand, and the preferred coordination through these donor atoms.  相似文献   

3.
Hexa-peri-hexabenzocoronene (HBC) is a remarkable polycyclic aromatic hydrocarbon and is often called "superbenzene" because of its similarity to benzene. In this article we present the facile synthesis of oligomers of HBC, up to trimers (3, 4, 5a-c) with different modes of connection. UV-vis and fluorescence spectroscopy studies reveal that the oligomers are electronically decoupled. This arises from the small atomic orbital coefficients of the bridge-head carbon atoms, the large torsion angle between the HBC units, and the large distance of interacting transition dipoles due to the size of the HBC chromophore. For comparison, a methylene-bridged HBC dimer 6, so-called "superfluorene", was prepared. The induced planarity improves pi-conjugation and suppresses the geometrical relaxation of the backbone upon electronic excitation, leading to a prominent 0-0 transition band in the fluorescence spectra. The self-assembly of the oligomers and of superfluorene 6 was studied by wide-angle X-ray diffraction (WAXD) in the bulk state, and ordered columnar stacking occurs in the HBC dimer 3, p-HBC trimer 4, and superfluorene 6. Measurements of shear-aligned samples show that, despite increasing aspects ratio by linear entrainment of disks, the anitropic element that is subject to alignment by shear is the supramolecular columns.  相似文献   

4.
It has been shown that the interaction of chitosan and oligochitosan with unsaturated acrylic esters via the nucleophilic addition mechanism and their condensation with heptadecyl isocyanate yield hydrophobic alkyl-containing derivatives of the above polymers. The method of modification of oligochitosan in reactions via end functional groups is developed.  相似文献   

5.
The reaction of copper(II) hydroxocarbonate, mandelic acid (H2MANO) and 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen) in water affords [Cu(bpy)(μ2-MANO)]2 · 8H2O (1), [Cu(bpy)(MANO)] · 4H2O (2) and the opened tetranuclear hydroxo-bridged copper(II) complexes of formulae [Cu43-OH)22-MANO)2(bpy)4](phglyo)2 · 8H2O (3) (phglyo = phenylglyoxylate) or [Cu43-OH)22-OH)2(OH2)2(phen)4](Bza)2(OH)2 · 5H2O (4) (Bza = benzoate), respectively. The compounds have been characterized by spectroscopic techniques and studied by single-crystal X-ray diffractometry. The formation of 3 and 4 takes place in basic media through dehydrogenation or oxidative dehydrogenation followed by in situ oxidative decarboxylation of mandelic acid to phenylglyoxylate or benzoate, respectively. These results indicate that cooperative catalysis of diimine ancillary ligands and copper(II) is essential.  相似文献   

6.
The diversity of techniques used in the synthesis, treatment, and purification of the single-stranded DNA oligomers containing a thiol anchor group (SH-ssDNA) has led to a significant variation in the purity of commercially available SH-ssDNA. In this work, we use X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to study how the impurities present in commercially synthesized SH-ssDNA oligomers affected the structure of the resulting DNA films on Au. XPS results indicate that two of the purchased SH-ssDNA oligomers contain excess carbon and sulfur. The molecular fragmentation patterns obtained with ToF-SIMS were used to determine the identity of several contaminants in the DNA films, including poly(dimethylsiloxane) (PDMS), lipid molecules, and sulfur-containing molecules. In particular, the ToF-SIMS results determined that the excess sulfur detected by XPS was due to the presence of dithiothreitol, a reductant often used to cleave disulfide precursors. Furthermore, we found that the SH-ssDNA self-assembly process is affected by the presence of these contaminants. When relatively pure SH-ssDNA is used to prepare the DNA films, the P, N, O, and C atomic percentages were observed by XPS to increase over a 24-h time period. In contrast, surfaces prepared using SH-ssDNA containing higher levels of contaminants did not follow this trend. XPS result indicates that, after the initial SH-ssDNA adsorption, the remaining material incorporated into these films was due to contamination.  相似文献   

7.
E-1-Ferrocenyl-4,4-dimethylpent-2-ene-1-one has been synthesised from the Friedel-Crafts acylation of ferrocene with E-3-tert-butylacryloylchloride and converted to 1-ferrocenyl-3-chloro-4,4-dimethylpentan-1-one using ethereal hydrogen chloride. This new chloro ketone has been converted into three new ferrocene alcohols: 1-ferrocenyl-3,4-dimethyl-4-hydroxypentan-1-one, 1-ferrocenyl-3-chloro-4,4-dimethylpentan-1-ol, and 2,2,6,6-tetramethyl-3-ferrocenyl-5-chloroheptan-3-ol. A new dinuclear ferrocene derivative, E,E-2,2,9,9-tetramethyl-5,6-diferrocenyl-deca-3,7-diene, was isolated after treatment of 1-ferrocenyl-3-chloro-4,4-dimethylpentan-1-ol with acidic alumina; its structure was confirmed by X-ray crystallography, whilst electrochemistry revealed metal-metal interactions of similar magnitude to those seen for other 1,2-bis(ferrocenyl)ethane derivatives. Crystal structures have also been determined for 2,2,6,6-tetramethyl-3-ferrocenyl-5-chloroheptan-3-ol, rac-1-hydroxy[3]ferrocenophane, rac-1S,3S-1,3-diphenyl-1-hydroxy[3]ferrocenophane, and of rac-1,1-diphenyl-1,1-(1,1- ruthenocenediyl)dimethanol and show an intramolecular Cl?H-O hydrogen bond, a tetramer based on O?H-O hydrogen bonds, no hydrogen bonding, and a dimer with inter- and intramolecular O?H-O hydrogen bonds, respectively.  相似文献   

8.
9.
10.
Novel anionic dinuclear mixed-ligand peroxo complexes of the type [(UO2)2(O2)3L(H2O)2]3− (L = Histidinate, aspartate, salicylate, Imidazolate and glutamate) have been synthesized from the interaction of uranyl ion (UO22+) with peroxide (O22−) in the presence of the respective coligand (L) at pH 9–10. The sparingly soluble complexes were characterized by elemental analyses, FT-IR, laser Raman (LR) and UV-vis spectroscopy and solution electrical conductance measurements. Based on these studies, a double bridged dinuclear structure involving one peroxo and the mixed ligand L (via-COO) has been tentatively proposed. Infra-red coupled with LR spectra evidenced structurally different metal bound peroxides (ν2 and σ:σ). An aqueous solution of the salicylate and aspartate complexes have been shown to convert triphenylphosphine (PPh3), cyclohexene, styrene and SO2 to the corresponding OPPh3, 1,2 cyclohexanediol, phenylethyleneglycol and SO42−, respectively.  相似文献   

11.
12.
13.
14.
The study of the reaction of l-tyrosine or its tetrabutylammonium salt with formaldehyde was performed. The results established that this reaction does not lead to macrocyclic amino acid-type compounds, and in all cases, mixtures of linear oligomers of two or more l-tyrosine units bound by methylene groups were obtained. The formation of ion pair-type linear aggregates in the tetrabutylammonium salt hinders the oligomerization reaction, allowing the isolation of an l-tyrosine dimer, unlike the l-tyrosine reaction, in which a trimer could be isolated.  相似文献   

15.
The reactions of 2-substituted 4, 6-dihydroxytriazines with PCl5 and SOCl2 are investigated. It is shown that conversion of 2-(aryl- and substituted styryl)-4, 6-dihydroxy-1, 3, 5-triazine to the corresponding 4, 6-dichloro compounds is accompanied by ring opening and, in the case of styryl derivatives, by chlorination of the ethylene group. Analysis of the IR spectra of 4, 6-dihydroxytriazines establishes that under ordinary conditions they are 4, 6-dihydroxytetrahydrotriazines. Shift of the lactim-lactam equilibrium towards the oxo form is considered to be the reason why these compounds react with difficulty with SOCl2. A mechanism for the reaction of triazine hydroxy derivatives with PCl5 is put forward. New substituted triazines and intermediates are synthesized.  相似文献   

16.
There are many reports1 of the pyrolysis of fluorinated organic compounds, including the defluorination of cyclic fluorocarbons over iron to give aromatic compounds. Extending this technique we have investigated the flow pyrolysis of some readily accessible unsaturated fluorocarbons, such as I, II, and III, and found these to be synthetically
useful routes to fluorinated dienes, cyclobutenes, and furans. Pyrolyses were carried out using a nitrogen flow over platinum, iron or caesium fluoride heated at 430–700°. The various products can all be rationalized in terms of intermediate allylic radicals, and the solid substrate influences which allylic radicals are formed.We are also investigating the chemistry of those now accessible compounds, such as IV, V, and VI, and some of the preliminary results are described.
For example the fluoride ion induced dimerisation of IV gave two major products VII and VIII via a particular interesting mechanism.
  相似文献   

17.
Picolyl hydrazide ligands have two potentially bridging functional groups (micro-O, micro-N-N) and consequently can exist in different coordination conformers, both of which form spin-coupled polynuclear coordination complexes, with quite different magnetic properties. The complex [Cu(2)(POAP-H)Br(3)(H(2)O)] (1) involves a micro-N-N bridge (Cu-N-N-Cu 150.6 degrees ) and exhibits quite strong antiferromagnetic coupling (-2J = 246(1) cm(-)(1)). [Cu(2)(PZOAPZ-H)Br(3)(H(2)O)(2)] (2) has two Cu(II) centers bridged by an alkoxide group with a very large Cu-O-Cu angle of 141.7 degrees but unexpectedly exhibits quite weak antiferromagnetic exchange (-2J = 91.5 cm(-)(1)). This is much weaker than anticipated, despite direct overlap of the copper magnetic orbitals. Density functional calculations have been carried out on compound 2, yielding a similar singlet-triplet splitting energy. Structural details are reported for [Cu(2)(POAP-H)Br(3)(H(2)O)] (1), [Cu(2)(PZOAPZ-H)Br(3)(H(2)O)(2)] (2), [Cu(2)(PAOPF-2H)Br(2)(DMSO)(H(2)O)].H(2)O (3), [Cu(4)(POMP-H))(4)](NO(3))(4).2H(2)O (4), and PPOCCO (5) (a picolyl hydrazide ligand with a terminal oxime group) and its mononuclear complexes [Cu(PPOCCO-H)(NO(3))] (6) and [Cu(PPOCCO-H)Cl] (7). Compound 1 (C(12)H(13)Br(3)Cu(2)N(5)O(4)) crystallizes in the monoclinic system, space group P2(1)/c, with a = 15.1465(3) A, b = 18.1848(12) A, c = 6.8557(5) A, beta = 92.751(4) degrees, and Z = 4. Compound 2 (C(10)H(13)Br(3)Cu(2)N(7)O(4)) crystallizes in the triclinic system, space group P, with a = 9.14130(1) A, b = 10.4723(1) A, c = 10.9411(1) A, alpha = 100.769(1), beta = 106.271(1) degrees, gamma = 103.447(1) degrees, and Z = 2. Compound 3 (C(23)H(22)Br(2)Cu(2)N(7)O(5.5)S) crystallizes in the monoclinic system, space group P2(1)/c, with a = 12.406(2) A, b = 22.157(3) A, c = 10.704(2) A, beta = 106.21(1) degrees, and Z = 4. Compound 4(C(52)H(48)Cu(4)N(20)O(18)) crystallizes in the monoclinic system, space group P2(1)/n, with a = 14.4439(6) A, b = 12.8079(5) A, c = 16.4240(7) A, beta = 105.199(1) degrees, and Z = 4. Compound 5 (C(15)H(14)N(4)O(2)) crystallizes in the orthorhombic system, space group Pna2(1), with a = 7.834(3) A, b = 11.797(4) A, c = 15.281(3) A, and Z = 4. Compound 6(C(15)H(13)CuN(5)O(5)) crystallizes in the monoclinic system, space group P2(1)/c, with a = 8.2818(9) A, b = 17.886(2) A, c = 10.828(1) A, beta = 92.734(2) degrees, and Z = 4. Compound 7 (C(15)H(13)CuClN(4)O(2)) crystallizes in the orthorhombic system, space group Pna2(1), with a = 7.9487(6) A, b = 14.3336(10) A, c = 13.0014(9) A, and Z = 4. Density functional calculations on PPOCCO are examined in relation to the anti-eclipsed conformational change that occurs on coordination to copper(II).  相似文献   

18.
19.
The hexadecanuclear, mixed-valence cluster [Mo(16)O(42)(OH)(2)(3-iPrC(3)H(3)N(2))(12)].H(2)O (1), has been synthesized and characterized by X-ray crystallography, IR spectroscopy and mass spectrometry. The C(2)-symmetric complex consists of a cubane Mo(VI) (4)O(4) "jewel" held in a 10-point "setting" comprised of five dinuclear Mo(V) units tethered together by two tetrahedral Mo(VI) centers. The dinuclear units are ligated by twelve 3-isopropylpyrazole units that interact with the Mo--O framework through a network of hydrogen bonds. Structural parameters, charge requirements, and bond valence sum analyses support the assignment of +5 and +6 oxidation states to the dinuclear and cubane/tetrahedral Mo centers, respectively. Space filling models reveal that the pyrazole groups coat much of the surface of the molecule, apart from a number of oxo-rich seams that trace a chiral pattern across the surface. Complex 1 exhibits a unique structure that combines moieties generally atypical of polyoxometalates, viz., a Mo cubane containing only two terminal oxo ligands, and three distinct Mo(V) (2) units (including a 5-coordinate Mo center) tethered into a 10-point "setting" by tetrahedral Mo(VI) centers.  相似文献   

20.
6-Substituted benzyl-4-phenyl-3-thioxo-2,3,4,5-tetrahydro-1,2,4-triazin-5-ones 3a-d were prepared and converted into their corresponding 3-methylthio derivatives 4a-d . Reaction of compounds 4a-d with hydrazine hydrate gave the corresponding 4-amino-3-anilino-4,5-dihydro-1,2,4-triazin-5-ones 5a-d . 6-Substituted benzyl-4-phenyl-2,3,4,5-tetrahydro-1,2,4-triazin-3,5-diones 9a-c were synthesized and allowed to react with hydrazine hydrate to give the corresponding 6-substituted benzyl-4-amino-2,3,4,5-tetrahydro-1,2,4-triazin-3,5-diones 10a-c . The biological evaluation of some of these triazines is described. All compounds were screened for antiviral, antibacterial, antimycobacterial, antifungal and antiyeast activity. No important biological activity was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号