首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 93 毫秒
1.
本文应用一个改进的等效线性化方法探讨了地基土——多自由度非线性结构相互作用体系在随机地震荷载作用下的非平稳动力响应问题。对非线性恢复力模型采用一个具有三线性滞回特性的非线性系统。最后将在平稳Gauss过滤白噪声激励下的非平稳随机响应与Monte-carlo法的统计结果进行了比较,得出了较为满意的结果。  相似文献   

2.
不确定非线性结构动力响应的区间分析方法   总被引:7,自引:0,他引:7  
研究多自由度非线性不确定参数系统的动力响应问题. 以区间数学为基础,将不确定 性参数用区间进行定量化,借助一阶Taylor级数,给出了近似估计非线性振动系统动力响 应范围的区间分析方法. 从数学证明和数值算例两方面,将其与概率摄动有限元法进行了比 较,结果显示区间分析方法对不确定参数先验信息具有要求较少、精度较高的优点.  相似文献   

3.
为了解决由于测量条件限制而产生的接触力难于测量的问题,利用近年发展起来的反分析法,并结合计算机模拟技术,给出了一种解决结构受到强冲击载荷时测量冲击力的通用方法。并将该方法应用到对压力管道耐撞性侧向冲击实验中冲击力的校核,给出了该冲击系统的传递函数h(t)。在实验测量值的基础上,得出了较为精确的冲击力时程曲线,从而验证了该方法的实用性。  相似文献   

4.
In this work a comparative study of two versions of the projection algorithm used either for time integration or as an iterative method to solve the three‐dimensional incompressible Navier–Stokes equations is presented. It is also shown that these projection algorithms combined with the finite element method are particularly suited for the treatment of outflow boundary conditions in the context of external flows. This assertion is illustrated by means of some numerical examples in which five types of boundary conditions are compared. The scheme is applied to simulate the flow past a cylinder clamped on two fixed parallel solid walls. Comparison with experimental data available for this problem shows good agreement of the velocity and pressure fields, both computed with continuous piecewise linear elements. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
基于非局部地基理论,推导了移动荷载作用下非局部地基梁动力响应问题的有限元解,分别讨论了地基的非局部参数、刚度、阻尼系数以及移动荷载速度对非局部地基梁动力响应的影响,并比较了非局部结果与局部结果的差异。结果表明,地基的非局部参数、刚度和阻尼是地基梁的动力响应的主要影响参数,地基梁最大响应及其发生的时刻与移动荷载速度有关。研究成果可为轨道地基系统设计提供参考。  相似文献   

6.
为分析简谐激励作用下轴向运动梁的横向振动问题,采用单元数目及长度固定不变、节点参数在不同时间步下无缝传递的节点生死方法,建立了时变系统的动力学有限元模型,通过已有实例验证了模型的准确性和有效性。在此基础上,分析了架设速度、激励力频率和幅值对某型平推式军用桥梁架设过程横向动力响应的影响规律。结果表明,在架设过程中,当桥梁的时变固有频率与激励力频率接近时,桥梁位移动态响应呈共振的特点,据此提出了减小某型平推式军用桥梁架设过程动力响应的措施。  相似文献   

7.
直杆碰撞刚性壁弹塑性动力后屈曲有限元分析   总被引:1,自引:0,他引:1  
郑波  王安稳 《爆炸与冲击》2007,27(2):126-130
利用显式动力学有限元方法对直杆弹塑性动力后屈曲进行了分析,模拟了直杆轴向碰撞动力屈曲的变形及发展过程。分析中在直杆碰撞端局部临界屈曲长度范围内引入半正弦波形式的初始缺陷,计算结果与文献中的实验数据获得了很好的一致。分析结果表明,随着碰撞过程中所产生的应力波逐渐向前传播,后屈曲变形过程中所呈现的多个半波形式的高阶屈曲模态由初始具有单个半波形式的简单屈曲模态迅速演变而成。分析结果同时也揭示了直杆动力屈曲变形发展的机理,以及轴向应力波和屈曲变形的相互作用规律。  相似文献   

8.
In this paper, the transient analysis of a single pile and a 3 × 3 pile group is presented for Gibson type non-homogeneous soil by using a hybrid type of boundary and finite element formulation for the soil domain and pile domain, respectively. The formula is presented for a transient point force acting in the interior of a non-homogeneous, isotropic half space. A time stepping boundary element algorithm for soil domain is used together with an implicit time integration scheme for finite pile domain. To investigate the validity of this formulation, a single pile and a pile group are analyzed under Heaviside loading and triangular transient loading. In the analyses, it can be concluded that the results agree well for all cases of the inhomogeneity index by comparing the Laplace domain solutions.  相似文献   

9.
This paper is concerned with the parametric investigation on the structural dynamic response of moving fuel‐storage tanks with baffles. Since the structural dynamic behaviour is strongly coupled with interior liquid motion, the design of a fuel‐storage tank securing the structural stability becomes the appropriate suppression of the flow motion, which is in turn related to the baffle design. In order to numerically investigate the parametric dynamic characteristics of moving tanks, we employ the arbitrary Lagrangian–Eulerian (ALE) finite element method that is widely being used to deal with the problems with free surface, moving boundary, large deformation and interface contact. Following the theoretical and numerical formulations of fluid‐structure interaction problems, we present parametric numerical results of a cylindrical fuel‐storage tank moving with uniform vertical acceleration, with respect to the baffle number and location, and the inner‐hole diameter. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Two- (2D) and three-dimensional (3D) finite element analyses for flow around two square columns in tandem arrangement were performed with various column spacings and Reynolds numbers. The computed values were compared with the wind-tunnel results in terms of the aerodynamic characteristics of the leeward column. In most 2D computations, strong vortices were formed behind the windward column, irrespective of widely changed Reynolds numbers. This was different from the experimental phenomena of equivalent spacing, so that the computed time-averaged pressure coefficients were not identical to the experimental values except when the distance between the two columns was adequately wide or narrow. On the other hand, in 3D computation, distinct differences in flow structures behind the column were observed between Reynolds numbers of 103 and 104 and the pressure coefficient in the 3D analysis with Re=104 agreed well with the experimental value. Thus, the effectiveness of 3D computations and Reynolds number effects on the flow around two square columns have been confirmed. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
The dynamic stress and electric displacement intensity factors of impermeable cracks in homogeneous piezoelectric materials and interface cracks in piezoelectric bimaterials are evaluated by extending the scaled boundary finite element method (SBFEM). In this method, a piezoelectric plate is divided into polygons. Each polygon is treated as a scaled boundary finite element subdomain. Only the boundaries of the subdomains need to be discretized with line elements. The dynamic properties of a subdomain are represented by the high order stiffness and mass matrices obtained from a continued fraction solution, which is able to represent the high frequency response with only 3–4 terms per wavelength. The semi-analytical solutions model singular stress and electric displacement fields in the vicinity of crack tips accurately and efficiently. The dynamic stress and electric displacement intensity factors are evaluated directly from the scaled boundary finite element solutions. No asymptotic solution, local mesh refinement or other special treatments around a crack tip are required. Numerical examples are presented to verify the proposed technique with the analytical solutions and the results from the literature. The present results highlight the accuracy, simplicity and efficiency of the proposed technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号