首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study the effect of monolayer quality on the electrical transport through n-Si/C(n)H(2n+1)/Hg junctions (n = 12, 14, and 18) and find that truly high quality layers and only they, yield the type of data, reported by us in Phys. Rev. Lett. 2005, 95, 266807, data that are consistent with the theoretically predicted behavior of a Schottky barrier coupled to a tunnel barrier. By using that agreement as our starting point, we can assess the effects of changing the quality of the alkyl monolayers, as judged from ellipsometer, contact angle, XPS, and ATR-FTIR measurements, on the electrical transport. Although low monolayer quality layers are easily identified by one or more of those characterization tools, as well as from the current-voltage measurements, even a combination of characterization techniques may not suffice to distinguish between monolayers with minor differences in quality, which, nevertheless, are evident in the transport measurement. The thermionic emission mechanism, which in these systems dominates at low forward bias, is the one that is most sensitive to monolayer quality. It serves thus as the best quality control. This is important because, even where tunneling characteristics appear rather insensitive to slightly diminished quality, their correct analysis will be affected, especially if layers of different lengths are also of different quality.  相似文献   

2.
Methyl-terminated and acyl chloride terminated monolayers are produced when silicon is scribed under mono- and diacid chlorides, respectively. To the best of our knowledge, this is the first report of the reaction between a bare silicon surface and acid chlorides. This reaction takes place by wetting the silicon surface in the air with the acid chloride and scribing. Scribing activates the silicon surface by removing its passivation layer. We propose that scribed silicon abstracts chlorine from an acid chloride to form an Si-Cl bond and that the resulting acyl radical diffuses back to the surface to condense with the surface and form an alkyl monolayer. X-ray photoelectron spectroscopy (XPS) confirms the presence of chlorine and shows a steady increase in the amount of carbon with increasing alkyl chain lengths of the acid chlorides. Time-of-flight secondary ion mass spectrometry shows SiCl(+) species and a steady increase in representative hydrocarbon fragments with increasing alkyl chain lengths of the acid chlorides. XPS indicates that diacid chlorides react primarily at one of their ends to create acyl chloride terminated surfaces in a single step. The resulting surfaces are shown to react with various amines (piperazine, morpholine, and octylamine) and a protein. Calculations at Hartree-Fock and density functional theory levels are consistent with the proposed mechanism.  相似文献   

3.
The reaction of vapor-phase alkyl isocyanates (O=C=N-(CH2)n-1CH3) with OH-terminated alkanethiol template monolayers on Au produces well-organized self-assembled monolayers, containing intrachain carbamate linkages (Au/S(CH2)16O(C=O)NH(CH2)n-1CH3, where n = 1-8, 11, and 12). X-ray photoelectron spectroscopy, contact angle goniometry, and reflection absorption infrared spectroscopy suggest that the template surface completely reacts with the isocyanates yielding a monolayer that contains an interchain hydrogen-bonded carbamate network. Spectroscopic data indicates that the alkyl underlayer remains well ordered following reaction with the isocyanates. The order of the overlayer and the hydrogen-bonding interactions between adjacent chains increase as a function of the alkyl isocyanate chain length, n. The overlayer appears to be well ordered for n > or = 5.  相似文献   

4.
Organosilane self‐assembled monolayers (SAMs) are commonly used for modifying a wide range of substrates. Depending on the end group, highly hydrophobic or hydrophilic surfaces can be achieved. Silanization bases on the adsorption, self‐assembly and covalent binding of silane molecules onto surfaces and results in a densely packed, SAM. Following wet chemical routines, the quality of the monolayer is often variable and, therefore, unsatisfactory. The process of self‐assembly is not only affected by the chemicals involved and their purity but is also extremely sensitive to ambient parameters such as humidity or temperature and to contaminants. Here, a reliable and efficient wet‐chemical recipe is presented for the preparation of ultra‐smooth, highly ordered alkyl‐terminated silane SAMs on Si wafers. The resulting surfaces are characterized by means of atomic force microscopy, X‐ray reflectometry and contact angle measurements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The phase behavior and morphological characteristics of monolayers composed of equimolar mixed cationic-anionic surfactants at the air/water interface were investigated by measurements of surface pressure-area per alkyl chain (pi-A) and surface potential-area per alkyl chain (DeltaV-A) isotherms with Brewster angle microscope (BAM) observations. Cationic single-alkyl ammonium bromides and anionic sodium single-alkyl sulfates with alkyl chain length ranging from C(12) to C(16) were used to form mixed surfactant monolayers on the water subphase at 21 degrees C by a co-spreading approach. The results demonstrated that when the monolayers were at states with larger areas per alkyl chain during the monolayer compression process, the DeltaV-A isotherms were generally more sensitive than the pi-A isotherms to the molecular orientation variations. For the mixed monolayer components with longer alkyl chains, a close-packed monolayer with condensed monolayer characteristics resulted apparently due to the stronger dispersion interaction between the molecules. BAM images also revealed that with the increase in the alkyl chain length of the surfactants in the mixed monolayers, the condensed/collapse phase formation of the monolayers during the interface compression stage became pronounced. In addition, the variations in the condensed monolayer morphology of the equimolar mixed cationic-anionic surfactants were closely related to the alkyl chain lengths of the components.  相似文献   

6.
The main characteristics of Langmuir monolayers are radically changed by molecular recognition of hydrogen bond nonsurface-active species. The change in the thermodynamic, phase, and structural features by molecular recognition of dissolved uracil or barbituric acid by 2,4-di(n-undecylamino)-6-amino-1,3,5-triazine (2C11H23-melamine) monolayers is characterized by combination of surface pressure studies with Brewster angle microscopy (BAM) imaging and Grazing incidence X-ray diffraction (GIXD) measurements. Phase behavior of the 2C11H23-melamine monolayer and morphology of the condensed phase domains are changed drastically, but in a specific way, by molecular recognition of uracil or barbituric acid. The main characteristics of the interfacial system can be essentially affected by the kinetics of the recognition process. Pure 2C11H23-melamine monolayers show only small compact, but nontextured domains. The monolayers of 2C11H23-melamine-uracil assemblies develop well-shaped circular condensed-phase domains having an inner texture with alkyl chains essentially oriented parallel to the periphery and having a striking tendency to two-dimensional (2D) Ostwald ripening. The 2C11H23-melamine-barbituric acid monolayers form large homogeneous areas of condensed phase that transfer at smaller areas per molecule to a homogeneous condensed monolayer. BAM imaging of corresponding assemblies with ((CH3(CH2)11O(CH2)3)2-melamine having modified alkyl chains demonstrates the specific effect of the monolayer component. GIXD results reveal that molecular recognition of pyrimidine derivatives gives rise only to quantitative changes in the two-dimensional lattice structure. The striking differences in the main characteristics between the supramolecular species are related to their different chemical structures. Quantum chemical calculations using the semiempirical PM3 method provide information about the different nature of the hydrogen-bonding-based supramolecular structures.  相似文献   

7.
Aliphatic alcohols and aldehydes were reacted with the Si(111)-H surface to form Si-O-C interfacial bonds from dilute solution by using ultraviolet light. The resulting monolayers were characterized by using transmission infrared spectroscopy, spectroscopic ellipsometry, and contact angle measurements. The effect of different solvents on monolayer quality is presented. The best monolayers were formed from CH(2)Cl(2). The optimized monolayers were thoroughly characterized to determine the film structure and monolayer stability. The UV-promoted, alcohol-functionalized, and aldehyde-functionalized monolayers are of comparable quality to those previously prepared by other means. Although both molecules are tethered through a Si-O-C bond, the film reactivity is distinctly different with the aldehyde films being more chemically resistant. The differences in chemical reactivity, vibrational spectra, hydrophobicity, and ellipsometric thickness between the alcohol and aldehyde monolayers are attributed to a difference in molecular coverage and monolayer formation.  相似文献   

8.
The effect of phase state of self-assembled monolayers (SAMs) on adhesion behavior was studied using a combination of atomic force microscopy (AFM) and Johnson-Kendall-Roberts (JKR) methods. The phase state of SAMs was controlled by adjusting the reaction temperature. Order-to-disorder structural transitions in monolayers of n-alkyltrichlorosilanes resulted in dramatic increases in adhesion force and adhesion hysteresis, which represents the first report of alterations in adhesion properties due to phase changes of monolayers without any effect of chain length and surface heterogeneity. This increase in mechanical deformation of the disordered monolayer is understood to be caused by increases in (1) molecular contact between the AFM tip and a disordered monolayer due to the more deformable state of the latter and (2) monolayer deformation during unloading by the JKR probe lens. Adhesion hysteresis was found to have greater sensitivity toward the unloading rate for disordered monolayers. The occurrence of maximum hysteresis at faster rates proves that monolayer chain mobility increases with structural disorder, resulting in increased mechanical deformation.  相似文献   

9.
On H-Si(111) surfaces monolayer formation with 1-alkenes results in alkyl monolayers with a Si-C-C linkage, while 1-alkynes yield alkenyl monolayers with a Si-C═C linkage. Recently, considerable structural differences between both types of monolayers were observed, including an increased thickness, improved packing, and higher surface coverage for the alkenyl monolayers. The precise origin thereof could experimentally not be clarified yet. Therefore, octadecyl and octadecenyl monolayers on Si(111) were studied in detail by molecular modeling via PCFF molecular mechanics calculations on periodically repeated slabs of modified surfaces. After energy minimization the packing energies, structural properties, close contacts, and deformations of the Si surfaces of monolayers structures with various substitution percentages and substitution patterns were analyzed. For the octadecyl monolayers all data pointed to a substitution percentage close to 50-55%, which is due the size of the CH(2) groups near the Si surface. This agrees with literature and the experimentally determined coverage of octadecyl monolayers. For the octadecenyl monolayers the minimum in packing energy per chain is calculated around 60% coverage, i.e., close to the experimentally observed value of 65% [Scheres et al. Langmuir 2010, 26, 4790], and this packing energy is less dependent on the substitution percentage than calculated for alkyl layers. Analysis of the chain conformations, close contacts, and Si surface deformation clarifies this, since even at coverages above 60% a relatively low number of close contacts and a negligible deformation of the Si was observed. In order to evaluate the thermodynamic feasibility of the monolayer structures, we estimated the binding energies of 1-alkenes and 1-alkynes to the hydrogen-terminated Si surface at a range of surface coverages by composite high-quality G3 calculations and determined the total energy of monolayer formation by adding the packing energies and the binding energies. It was shown that due to the significantly larger reaction exothermicity of the 1-alkynes, thermodynamically even a substitution percentage as high as 75% is possible for octadecenyl chains. However, because sterically (based on the van der Waals footprint) a coverage of 69% is the maximum for alkyl and alkenyl monolayers, the optimal substitution percentage of octadecenyl monolayers will be presumably close to this latter value, and the experimentally observed 65% is likely close to what is experimentally maximally obtainable with alkenyl monolayers.  相似文献   

10.
The design of silicon/alkyl layer/metal junctions for the formation of optimal top metal contacts requires knowledge of the mechanistic and energetic aspects of the interactions of metal atoms with the modified surface. This involves (a) the interaction of the metal with the terminal groups of the organic layer, (b) the diffusion of metal atoms through the organic layer and (c) the reactions of metal atoms with the silicon surface atoms. The diffusion through the monolayer and the metal catalyzed breakage of Si-C bonds must be avoided to obtain high quality junctions. In this work, we performed a comprehensive density functional theory investigation to identify the reaction pathways of all these processes. In the absence of a reactive terminal group, gold atoms may penetrate through a compact alkyl monolayer on Si(111) with no energy barrier. However, the presence of thiol terminal groups introduces a high energy barrier which blocks the diffusion of metals into the monolayer. The diffusion barriers increase in the order Ag < Au < Cu and correlate with the stability of metal-thiolate complexes whereas the barriers for the formation of metal silicides increase in the order Cu < Au < Ag in correlation with the increasing metallic radii. The reactivity of gold clusters with functionalized Si(111) surfaces was also investigated. Metal silicide formation can only be avoided by a compact monolayer terminated by a reactive functional group. The mechanistic and energetic picture obtained in this work contributes to understanding of the factors that influence the quality of top metal contacts during the formation of silicon/organic layer/metal junctions.  相似文献   

11.
We show that electronic transport quality alkyl chain mono-layers can be prepared from dilute solution, rather than from neat alkanes, and on Si (100) instead of (111) surfaces. High monolayer quality was deduced from XPS and from comparing current-voltage curves of Hg/alkyl/Si junctions with those for junctions with monolayers made from neat alkanes. XPS shows that limited surface oxidation does not harm the integrity of the monolayer. Solution preparation significantly widens the range of molecules that can be used for transport studies.  相似文献   

12.
Model surfaces representative of chromatographic stationary phases were developed by immobilising an homologous series (C2-C18) of n-alkylthiols, mixed monolayers of C4/C18 and thioalkanes with alcohol, carboxylic acid, amino and sulphonic acid terminal groups onto a flat, silver-coated glass surface using self-assembled monolayer (SAM) chemistry. The processes of adsorption and desorption of serum albumins onto the monolayer surfaces was monitored in real-time using surface plasmon resonance (SPR). Alkyl-terminated SAMs all showed a strong adsorption of bovine serum albumin which was largely independent of alkyl chain length, the ratio of mixed C4/C18 SAMs or the solution pH/ionic strength. The adsorption of human serum albumin to carboxylic and amine terminated SAMs was shown to be predominantly via non-electrostatic interactions (hydrophobic or hydrogen bonding). However, sulphonic acid terminated SAMs showed almost exclusively electrostatic interactions with human serum albumin. This preliminary work using self-assembled monolayer chemistry confirms the usefulness of well characterised SAMs surfaces for investigating protein adsorption and desorption onto/from model chromatography surfaces and gives some guidance for selecting appropriate functionalities to develop better surfaces for chromatography and electrophoresis.  相似文献   

13.
A surface-initiated polymerization of styrene on carboxylic acid terminated phosphonic monolayers was utilized to increase the corrosion resistance of nitinol and nickel oxide surfaces. Alkyl chain ordering, organic reactions, wettability, and film quality of the monolayers and polymers were determined by infrared spectroscopy, atomic force microscopy, matrix-assisted laser desorption ionization spectrometry, and water contact angles. The polystyrene film proved to be a better corrosion barrier than phosphonic acid monolayers by analysis with cyclic voltammetry and electrochemical impedance spectroscopy. The protection efficiency of the polystyrene film on nitinol was 99.4% and the monolayer was 42%.  相似文献   

14.
Self-assembled monolayers (SAMs) of 1-alkenes on hydrogen-passivated silicon substrates were successfully patterned on the nanometer scale using an atomic force microscope (AFM) probe tip. Nanoshaving experiments on alkyl monolayers formed on H-Si(111) not only demonstrate the flexibility of this technique but also show that patterning with an AFM probe is a viable method for creating well-defined, nanoscale features in a monolayer matrix in a reproducible and controlled manner. Features of varying depths (2-15 nm) were created in the alkyl monolayers by controlling the applied load and the number of etching scans made at high applied loads. The patterning on these SAM films is compared with the patterning of alkyl siloxane monolayers on silicon and mica.  相似文献   

15.
Great interest has been devoted to the gemini amphiphiles because of their unique properties. In this article, we report some interesting properties of the interfacial films formed by a series of newly designed gemini amphiphiles containing the Schiff base moiety. This novel series of gemini amphiphiles with their Schiff base headgroups linked by a hydrophobic alkyl spacer (BisSBC18Cn, n = 2, 4, 6, 8, 10) could be spread to form stable monolayers and coordinated with Cu(Ac)(2) in situ in the monolayer. The alkyl spacer in the amphiphiles has a great effect on the regulation of the properties of the Langmuir monolayers. A maximum limiting molecular area was observed for the monolayers of the gemini amphiphile with the spacer length of hexa- or octamethylene groups. Both the monolayers on water and on the aqueous Cu(Ac)(2) subphase were transferred onto solid substrates, and different morphologies were observed for films with different spacers. Nanonail and tapelike morphologies were observed for amphiphile films with shorter spacers (n = 2 and 4) on the water surface. Wormlike morphologies were observed for gemini films with longer spacers of C(8) and C(10) when coordinated with Cu(Ac)(2). An interdigitated layer structure was supposed to form in the multilayer films transferred from water or the aqueous Cu(Ac)(2) subphase.  相似文献   

16.
The thermal stability of perfluoralkylsiloxane monolayers in a vacuum is investigated via X-ray photoelectron spectroscopy (XPS) for temperatures up to 600 degrees C. 1H,1H,2H,2H,-perfluorodecyltrichlorosilane (FDTS) monolayers are deposited on oxidized Si(100) surfaces from the vapor phase with various degrees of surface coverage. Significant monolayer desorption is observed to occur at temperatures below 300 degrees C regardless of the initial monolayer coverage. The desorption mechanism follows first-order kinetics and is independent of the initial coverage. Removal of FDTS is found to occur by the loss of the entire molecular chain, as evidenced by the fact that the CF(3)/CF(2) peak area ratios remain unaffected by the annealing process although CF(n)()/Si peak ratio declines with annealing. This is in sharp contrast to the behavior observed for octadecyltrichlorosilane monolayer for which elevated temperature leads to C-C bond breakage and successive shortening of the alkyl chain. It is also shown that the binding energy and the shape of the F 1s line are good indicators of the degree of disorder in the chain, as well as a measure of the interaction of the chain with the silicon surface.  相似文献   

17.
We measure frictional properties of liquid-expanded and liquid-condensed phases of lipid Langmuir-Blodgett monolayers by interfacial force microscopy. We find that over a reasonably broad surface-density range, the friction shear strength of the lipid monolayer film is proportional to the surface area (42-74 A2/molecule) occupied by each molecule. The increase in frictional force (i.e., friction shear strength with molecular area can be attributed to the increased conformational freedom and the resulting increase in the number of available modes for energy dissipation.  相似文献   

18.
We performed density functional theory calculations of the atomic and electronic structure of a dense monolayer of phenyl-terminated alkyl chains chemisorbed onto the (100) Si surface. Different adsorption sites were characterized for both the pristine and (2 x 1) reconstructed surface. A strong effect on the ordering and alignment of the molecular energy levels with respect to the Fermi level of silicon is observed, consequent to intermolecular screening in the monolayer and of the appearance of surface localized states, as a function of the different bonding arrangements. Some possible consequences of these findings are discussed in the framework of the experimental synthesis of such monolayers as molecular current rectifiers in silicon-integrated nanoscale electronics.  相似文献   

19.
Cavitand molecules having double bond terminated alkyl chains and different bridging groups at the upper rim have been grafted on H-terminated Si(100) surface via photochemical hydrosilylation of the double bonds. Pure and mixed monolayers have been obtained from mesitylene solutions of either pure cavitand or cavitand/1-octene mixtures. Angle resolved high-resolution X-ray photoelectron spectroscopy has been used as the main tool for the monolayer characterization. The cavitand decorated surface consists of Si-C bonded layers with the upper rim at the top of the layer. Grafting of pure cavitands leads to not-well-packed layers, which are not able to efficiently passivate the Si(100) surface. By contrast, monolayers obtained from cavitand/1-octene mixtures consist of well-packed layers since they prevent silicon oxidation after aging. AFM measurements showed that these monolayers have a structured topography, with objects protruding from the Si(100) surface with average heights compatible with the expected ones for cavitand molecules.  相似文献   

20.
This paper demonstrates the direct electron transfer between the heme moiety of horse hearth cytochrome c and a pyridinyl group on self‐assembled‐monolayer‐modified Si(100) electrodes. Self‐assembled monolayers (SAMs) containing the putative receptor ligand were prepared by a step‐wise procedure using “click” reactions of acetylene‐terminated alkyl monolayers and isonicotinic acid azide derivatives. Unoxidized Si(100) electrodes, possessing either isonicotinate or isonicotinamide receptor ligands, were characterized using X‐ray photoelectron spectroscopy, contact‐angle goniometry, cyclic voltammetry, and electrochemical impedance spectroscopy. The ability of isonicotinic acid terminated layers to coordinatively bind the redox center of cytochrome c was found to be restricted to pyridinyl assemblies with a para‐ester linkage present. The protocol detailed here offers an experimentally simple modular approach to producing chemically well‐defined SAMs on silicon surfaces for direct electrochemistry of a well‐studied model redox protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号