首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extracts of Aconitum septentrionale Koelle roots obtained using chloroform, isopropanol, and ethanol were purified using chloroform and basic γ-Al2O3. Ballast materials were selectively adsorbed by γ-Al2O3, increasing the mass fraction of lappaconitine in the extract. The ethanol extract was purified most. The degree of lappaconitine extraction by chloroform was unaffected by the presence of γ-Al2O3. However, the mass fraction in the extract and lappaconitine extraction from Aconitum septentrionale were increased more than twice. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 274–276, May–June, 2006.  相似文献   

2.
Solid acid supports such as H-ZSM5, H-Mordenite, γ-Al2O3, USY and Beta catalysts were modified with Pt. These Pt/oxide catalysts were found to be active for propane formation through aqueous reforming of glycerol in the presence of hydrogen. The reforming reactions, possibly, proceeded through reaction cycles of dehydration on acid sites and hydrogenation on Pt sites over the catalysts.  相似文献   

3.
In-situ coupling of adsorptive desulfurization and biodesulfurization is a new desulfurization technology for fossil oil. It has the merits of high-selectivity of biodesulfurization and high-rate of adsorptive desulfurization. It is carried out by assembling nano-adsorbents onto surfaces of microbial cells. In this work, In-situ coupling desulfurization technology of widely used desulfurization adsorbents of γ-Al2O3, Na-Y molecular sieves, and active carbon with Pseudomonas delafieldii R-8 were studied. Results show that Na-Y molecular sieves restrain the activity of R-8 cells and active carbon cannot desorb the substrate dibenzothiophene (DBT). Thus, they are not applicable to in-situ coupling desulfurization technology. Gamma-Al2O3 can adsorb DBT from oil phase quickly, and then desorb it and transfer it to R-8 cells for biodegradation, thus increasing desulfurization rate. It is also found that nano-sized γ-Al2O3 increases desulfurization rate more than regular-sized γ-Al2O3. Therefore, nano-γ-Al2O3 is regarded as the better adsorbent for this in-situ coupling desulfurization technology. Supported by National Basic Research Program of China (Grant No: 2006CB202507) and National High-tech R&D Program (Grant No: 2006AA02Z209)  相似文献   

4.
The fate and transport of toxic metal ions and radionuclides in the environment is generally controlled by sorption reactions. The extent of sorption of divalent metal cations is controlled by a number of factors including cosorbing or complexing. In this work, the effects of pH, humic acid HA/Co(II) addition orders, ionic strength, concentration of HA, and foreign cations on the Co(II) sorption on γ-Al2O3 in the presence of HA were investigated. The sorption isotherms of Co(II) on γ-Al2O3 in the absence and presence HA were also studied and described by using S-type sorption model. The experimental results showed that the Co(II) sorption is strongly dependent on the pH values, concentration of HA, but independent of HA/Co(II) addition orders, ionic strength, and foreign cations in the presence of HA under our experimental conditions. The results also indicated that HA enhanced the Co(II) sorption at low pH, but reduced the Co(II) sorption at high pH. It was hypothesized that the significantly positive influence of HA at low pH on the Co(II) sorption on γ-Al2O3 was attributed to strong surface binding of HA on γ-Al2O3 and subsequently the formation of ternary surface complexes such as ≡S-OOC-R-(COO) x Co2−x . Chemi-complexation may be the main mechanism of the Co(II) sorption on γ-Al2O3 in the presence of HA.  相似文献   

5.
Deep oxidation of chlorobenzene on γ-alumina catalysts whose active components are V2O5, CuCl, or their mixture was studied in relation to the temperature, contact time, and load on the catalyst. The activation energy of the chlorobenzene oxidation on the CuCl-V2O5/γ-Al2O3 catalyst was determined.  相似文献   

6.
1H MAS NMR and15N NMR studies of adsorbed N2 and N2O molecules were used to characterize Br?nsted and Lewis acidic sites of unmodified γ-Al2O3 and γ-Al2O3 modified with NaOH. Changes in the concentrations of surface hydroxyls with the increase in the number of more “basic” OH groups for NaOH/γ-Al2O3 have been found by1H MAS NMR experiments. Two different types of Lewis acidic sites in γ-Al2O3 have been revealed using15N NMR studies. The strongest sites are poisoned even at small NaOH concentrations (ca. 0.05 wt.%). Not only the number of electron-accepting sites but also their strength are supposed to decrease for modified γ-alumina.  相似文献   

7.
The influence of the composition of catalytic systems and the method for H2 feed into the reaction area on the degree of conversion of CO2 during its joint transformations with ethanol and on the selectivity of formation of liquid organic products (ethyl acetate, acetaldehyde, and hydrocarbons) was studied atp=15 atm andT=573 K. A noticeable conversion of CO2 and ethanol into ethyl acetate and acetaldehyde was observed in the presence of only the intermetallic compound, its composition with a palladium-containing catalyst, and the whole ternary catalytic system. The selectivity of the reaction changed when the binary catalytic composition consisting of the intermetallic and γ-Al2O3 was used. In this case, the fraction of C9–C14 alkenes and alkenes with normal and iso structures was mostly formed; its content was as high as 40%. The degree of conversion of CO2 reached 30–36% and the selectivity to liquid products was 70–80% only when the hydrogen desorbed from the intermetallic was used. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1360–1364, July, 1998.  相似文献   

8.
CO adsorption microcalorimetry was employed in the study of γ-Al2O3-supported Pt, Pt-Sn and Pt-Fe catalysts. The results indicated that the initial differential heat of CO adsorption of the Pt/γ-Al2O3 catalyst was 125 kJ/mol. As CO coverage increased, the differential heat of adsorption decreased. At higher coverages, the differential heat of adsorption decreased significantly. 60% of the differential heat of CO adsorption on the Pt/γ-N2O3 catalyst was higher than 100 kJ/mol. No significant effect on the initial differential heat was found after adding Sn and Fe to the Pt/γ-Al2O3 catalyst. The amount of strong CO adsorption sites decreased, while the portion of CO adsorption sites with differential heat of 60–110 kJ/mol increased after increasing the Sn or Fe content. This indicates that the surface adsorption energy was changed by adding Sn or Fe to Pt/γ-N2O3. The distribution of differential heat of CO adsorption on the Pt-Sn(C)/γ-Al2O3 catalyst was broad and homogeneous. Comparison of the dehydrogenation performance of C4 alkanes with the number of CO adsorption sites with differential heat of 60–110 kJ/mol showed a good correlation. These results indicate that the surface Pt centers with differential heats of 60–110 kJ/mol for CO adsorption possess superior activity for the dehydrogenation of alkanes. Project supported by FORD and the National Natural Science Foundation of China (Grant No. 09412302) and the Transcentury Training Program Foundation for the Talents by The State Education Commission of China.  相似文献   

9.
The sorption of 60Co(II) on γ-Al2O3 was conducted under various conditions, i.e., contact time, adsorbent content, pH, ionic strength, foreign ions, humic acid (HA), and temperature. Results of sorption data analysis indicated that the sorption of 60Co(II) on γ-Al2O3 was strongly dependent on pH and ionic strength. At low pH the sorption was dominated by outer-sphere surface complexation or ion exchange, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The presence of different cation ions influenced 60Co(II) sorption, while the presence of different anion ions had no obvious influences on 60Co(II) sorption. The presence of HA decreased the sorption of 60Co(II) on γ-Al2O3. The sorption isotherms were simulated well with the Langmuir model. The thermodynamic parameters (ΔH 0 , ΔS 0 and ΔG 0 ) calculated from the temperature-dependent sorption isotherms indicated that the sorption of 60Co(II) on γ-Al2O3 was an endothermic and spontaneous process. Experimental results indicated that the low cost material was a suitable material in the preconcentration of 60Co(II) from large volumes of aqueous solutions.  相似文献   

10.
In the presence of Pd-and Cr-containing catalysts applied to γ-Al2O3 or sibunite 4,5,6,7-tetrahydroindole is converted into indole. Indole was obtained in quantitative yield on sulfided 0.15–0.5% Pd/γ-Al2O3 catalyst at 360°C and on catalysts containing 5% Cr2O3, 5% La2O3 (or 5% polirit), 1% K2O/89% γ-Al2O3 at 475–480°C. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1176–1178, August, 2006.  相似文献   

11.
Adsorption of 13C18O+12C16O mixtures on the Pt(2.9%)/γ-Al2O3, (Pt(2.6%)+Cu(2.7%))/γ-Al2O3, and (Pt(2.6%)+Cu(5.1%))/γ-Al2O3 catalysts was studied by FTIR spectroscopy. On the metallic Pt surface at coverages close to saturation, CO is adsorbed both strongly and weakly to form linear species for which the vibrational frequencies of the isolated 13C18O molecules adsorbed on Pt are ∼1940 and ∼1970 cm−1, respectively. The redistribution of intensities of the high-and low-frequency absorption bands in the spectra of adsorbed 13C18O indicates that these linear forms are present on the adjacent metal sites. The weak adsorption is responsible for the fast isotope exchange between the gaseous CO and CO molecules adsorbed on metal. The Pt-Cu alloys, in which the electronic state of the surface Pt atoms characteristic of monometallic Pt remains unchanged, are formed on the surface of the reduced Pt-Cu bimetallic catalysts. The decrease in the vibrational frequencies of the isolated C=O bonds in the isolated Pt-CO complexes suggests that the CO molecules adsorbed on the Cu atoms affect the electronic properties of Pt. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 831–836, May, 2007.  相似文献   

12.
Steam-reforming of ethanol for hydrogen production   总被引:1,自引:0,他引:1  
Production of hydrogen by steam-reforming of ethanol has been performed using different catalytic systems. The present review focuses on various catalyst systems used for this purpose. The activity of catalysts depends on several factors such as the nature of the active metal catalyst and the catalyst support, the precursor used, the method adopted for catalyst preparation, and the presence of promoters as well as reaction conditions like the water-to-ethanol molar ratio, temperature, and space velocity. Among the active metals used to date for hydrogen production from ethanol, promoted-Ni is found to be a suitable choice in terms of the activity of the resulting catalyst. Cu is the most commonly used promoter with nickel-based catalysts to overcome the inactivity of nickel in the water-gas shift reaction. γ-Al2O3 support has been preferred by many researchers because of its ability to withstand reaction conditions. However, γ-Al2O3, being acidic, possesses the disadvantage of favouring ethanol dehydration to ethylene which is considered to be a source of carbon deposit found on the catalyst. To overcome this difficulty and to obtain the long-term catalyst stability, basic oxide supports such as CeO2, MgO, La2O3, etc. are mixed with alumina which neutralises the acidic sites. Most of the catalysts which can provide higher ethanol conversion and hydrogen selectivity were prepared by a combination of impregnation method and sol-gel method. High temperature and high water-to-ethanol molar ratio are two important factors in increasing the ethanol conversion and hydrogen selectivity, whereas an increase in pressure can adversely affect hydrogen production.  相似文献   

13.
The racemization of R-(-)-2-amino-1-butanol in a reaction using Co/γ-Al2O3 catalysts and catalysts modified by Mg or Ca was investigated in this paper. Complete racemization was achieved with a yield of over 83% at using the Mg modified Co/γ-Al2O3 catalyst under optimized reaction conditions of 170°C and 2.5 MPa of H2. The catalysts were thoroughly characterized by XRD, XPS, TPR, SEM and TEM. The addition of Mg and Ca may be advantageous for dispersing and stabilizing the active species of the Co/γ-Al2O3 catalyst, protecting from sintering, significantly improving its catalytic activity and stability.  相似文献   

14.
The catalytic properties of supported mono- and bimetallic catalysts of the Tc/support, M/support, and M-Tc/support types (M=Pt, Pd, Rh, Ru, Ni, Re, Co; supports are γ-Al2O3, MgO, SiO2) were investigated in the acetone hydrogenation. The main products of this reaction are isopropyl alcohol and propane. The catalytic activity in the acetone hydrogenation of the metals studied decreases in the consequence Pt>Tc≈Rh>Pd>Ru >Ni≈Re>Co (with γ-Al2O3 as the support). The influence of support nature on the catalytic activity was investigated for the Rh−Tc system as an example. A nonadditive increase in the catalytic activity of Rh−Tc/γ-Al2O3 in comparison with monometallic catalysts was found. The state of the surface of the catalysts was characterized by the UV-VIS diffuse reflectance spectra. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 414–417, March, 1998.  相似文献   

15.
Al2O3 and Al2−x Cr x O3 (x = 0.01, 0.02 and 0.04) powders have been synthesized by the polymeric precursors method. A study of the structural evolution of crystalline phases corresponding to the obtained powders was accomplished through X-Ray Diffraction and UV-vis spectroscopy (reflectance spectra and CIEL*a*b* color data). The obtained results allow to identify the γ-Al2O3 to α-Al2O3 phase transition. The single-phase α-Al2O3 powder was obtained after heat treatment at 1050 °C for 2 h. The results show that the green to red color transition and ruby luminescence lines observed for the powders of Al2−x Cr x O3 are related to the γ to α-Al2O3 phase transition and the temperature and time range for such transition depends on the chromium content.  相似文献   

16.
We consider some features of technology for manufacturing advanced three-way (CO/NO x /C n H m ) catalytic converters for emissions of internal combustion engines, namely, application, stabilization, and modification of γ-Al2O3 second supports on synthetic cordierite matrices and Pt, Pd, and Rh active components, as well as oxidation of finely divided carbon on the surface of soot filters coated with a catalyst coating in the form of binary oxide compositions (CuCr2O4 and CuCo2O4) using a number of oxidizers (O2, O3, NO, NO2, H2O, and CO2).  相似文献   

17.
The formation of highly imperfect γ-Al2O3 oxide prepared by calcining pseuodoboehmite and plasticized by organic acids was studied. The nature of the organic acid-aluminum hydroxide plasticizer was found to substantially influence the degree of γ-Al2O3 structure imperfection estimated qualitatively as the difference between the X-ray structural density and effective density with respect to helium and aluminum oxide. A high degree of imperfection caused an increase in the intensity of the absorption band at 3775 cm−1 corresponding to OH groups localized on five-coordinate Al3+ and the concentration of Lewis acid centers. The adsorption and catalytic properties of systems based on these carriers were studied.  相似文献   

18.
Re/Sibunite is a more active and selective catalyst for hydrogenation of ethyl acetate to ethanol under elevated temperatures and hydrogen pressures than Re/θ-Al2O3 and Re/γ-Al2O3. The activity of the catalyst is increased on replacing NH4ReO4 with HReO4 and treatment of the support with a 13% solution of HNO3. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1006–1008, May, 1999.  相似文献   

19.
Summary Effect of KCl on the structure and the catalytic properties of CuCl2/γ-Al2O3 catalyst for ethane oxychlorination has been studied by means of solubility test, UV-vis spectroscopy, XRD, TPR, TEM and catalytic reaction. Addition of KCl decreases the interaction between active species CuCl2 and γ-Al2O3 and increases the catalytic properties by accelerating the Cu(II) → Cu(I) reduction step.  相似文献   

20.
Catalysts containing 0.15–0.5 % of Pd are highly active and selective in the dehydrogenation of 4,5,6,7-tetrahydroindole to indole when γ-Al2O3 or Sibunite are used as supports. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1832–1833, October, 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号