首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frozen Landweber Iteration for Nonlinear Ill-Posed Problems   总被引:1,自引:0,他引:1  
In this paper we propose a modification of the Landweber iteration termed frozen Landweberiteration for nonlinear ill-posed problems.A convergence analysis for this iteration is presented.The numericalperformance of this frozen Landweber iteration for a nonlinear Hammerstein integral equation is compared withthat of the Landweber iteration.We obtain a shorter running time of the frozen Landweber iteration based onthe same convergence accuracy.  相似文献   

2.
Recovering an unknown low-rank or approximately low-rank matrix from a sampling set of its entries is known as the matrix completion problem. In this paper, a nonlinear constrained quadratic program problem concerning the matrix completion is obtained. A new algorithm named the projected Landweber iteration (PLW) is proposed, and the convergence is proved strictly. Numerical results show that the proposed algorithm can be fast and efficient under suitable prior conditions of the unknown low-rank matrix.  相似文献   

3.
We investigate the optimum correction of an absolute value equation by minimally changing the coefficient matrix and right-hand side vector using Tikhonov regularization. Solving this problem is equivalent to minimizing the sum of fractional quadratic and quadratic functions. The primary difficulty with this problem is its nonconvexity. Nonetheless, we show that a global optimal solution to this problem can be found by solving an equation on a closed interval using the subgradient method. Some examples are provided to illustrate the efficiency and validity of the proposed method.  相似文献   

4.
In this paper we introduce a new variant of L-curve to estimate the Tikhonov regularization parameter for the regularization of discrete ill-posed problems. This method uses the solution norm versus the regularization parameter. The numerical efficiency of this new method is also discussed by considering some test problems.  相似文献   

5.
Tikhonov regularization with the regularization parameter determined by the discrepancy principle requires the computation of a zero of a rational function. We describe a cubically convergent zero-finder for this purpose. AMS subject classification (2000)  65F22, 65H05, 65R32  相似文献   

6.
The numerical simulation of the mechanical behavior of industrial materials is widely used for viability verification, improvement and optimization of designs. Elastoplastic models have been used to forecast the mechanical behavior of different materials. The numerical solution of most elastoplastic models comes across problems of ill-condition matrices. A complete representation of the nonlinear behavior of such structures involves the nonlinear equilibrium path of the body and handling of singular (limit) points and/or bifurcation points. Several techniques to solve numerical problems associated to these points have been disposed in the specialized literature. Two examples are the load-controlled Newton–Raphson method and displacement controlled techniques. However, most of these methods fail due to convergence problems (ill-conditioning) in the neighborhood of limit points, specially when the structure presents snap-through or snap-back equilibrium paths. This study presents the main ideas and formalities of the Tikhonov regularization method and shows how this method can be used in the analysis of dynamic elastoplasticity problems. The study presents a rigorous mathematical demonstration of existence and uniqueness of the solution of well-posed dynamic elastoplasticity problems. The numerical solution of dynamic elastoplasticity problems using Tikhonov regularization is presented in this paper. The Galerkin method is used in this formulation. Effectiveness of Tikhonov’s approach in the regularization of the solution of elastoplasticity problems is demonstrated by means of some simple numerical examples.  相似文献   

7.
The goal of this study is to analyze the Tikhonov regularization method as applied to a general nonlinear optimization problem that has been previously reduced to an unconstrained optimization problem. The stability properties of the method are examined, and its convergence is proved. The text was submitted by the author in English.  相似文献   

8.
In this paper we consider nonlinear ill-posed problems F(x) = y 0, where x and y 0 are elements of Hilbert spaces X and Y, respectively. We solve these problems by Tikhonov regularization in a Hilbert scale. This means that the regularizing norm is stronger than the norm in X. Smoothness conditions are given that guarantee convergence rates with respect to the data noise in the original norm in X. We also propose a variant of Tikhonov regularization that yields these rates without needing the knowledge of the smoothness conditions. In this variant F is allowed to be known only approximately and X can be approximated by a finite-dimensional subspace. Finally, we illustrate the required conditions for a simple parameter estimation problem for regularization in Sobolev spaces.  相似文献   

9.
In this paper, we study the performance of the projected Landweber iteration (PLW) for the general low rank matrix recovery. The PLW was first proposed by Zhang and Chen (2010) [43] based on the sparse recovery algorithm APG (Daubechies et al., 2008) [14] in the matrix completion setting, and numerical experiments have been given to show its efficiency (Zhang and Chen, 2010) [43]. In this paper, we focus on providing a convergence rate analysis of the PLW in the general setting of low rank matrix recovery with the affine transform having the matrix restricted isometry property. We show robustness of the algorithm to noise with a strong geometric convergence rate even for noisy measurements provided that the affine transform satisfies a matrix restricted isometry property condition.  相似文献   

10.
This work deals with the numerical differentiation for an unknown smooth function whose data on a given set are available. The numerical differentiation is an ill-posed problem. In this work, the first and second derivatives of the smooth function are approximated by using the Tikhonov regularization method. It is proved that the approximate function can be chosen as a minimizer to a cost functional. The existence and uniqueness theory of the minimizer is established. Errors in the derivatives between the smooth unknown function and the approximate function are obtained, which depend on the mesh size of the grid and the noise level in the data. The numerical results are provided to support the theoretical analysis of this work. Selected from Numerical Mathematics (A Journal of Chinese Universities), 2004, 26(1):62–74  相似文献   

11.
Tikhonov regularization is one of the most popular approaches to solving linear discrete ill‐posed problems. The choice of the regularization matrix may significantly affect the quality of the computed solution. When the regularization matrix is the identity, iterated Tikhonov regularization can yield computed approximate solutions of higher quality than (standard) Tikhonov regularization. This paper provides an analysis of iterated Tikhonov regularization with a regularization matrix different from the identity. Computed examples illustrate the performance of this method.  相似文献   

12.
In this paper,we introduce a modified Landweber iteration to solve the sideways parabolic equation,which is an inverse heat conduction problem(IHCP) in the quarter plane and is severely ill-posed.We shall show that our method is of optimal order under both a priori and a posteriori stopping rule.Furthermore,if we use the discrepancy principle we can avoid the selection of the a priori bound.Numerical examples show that the computation effect is satisfactory.  相似文献   

13.
Generalized cross validation is a popular approach to determining the regularization parameter in Tikhonov regularization. The regularization parameter is chosen by minimizing an expression, which is easy to evaluate for small‐scale problems, but prohibitively expensive to compute for large‐scale ones. This paper describes a novel method, based on Gauss‐type quadrature, for determining upper and lower bounds for the desired expression. These bounds are used to determine the regularization parameter for large‐scale problems. Computed examples illustrate the performance of the proposed method and demonstrate its competitiveness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
We extend the Tikhonov regularization method widely used in optimization and monotone variational inequality studies to equilibrium problems. It is shown that the convergence results obtained from the monotone variational inequality remain valid for the monotone equilibrium problem. For pseudomonotone equilibrium problems, the Tikhonov regularized subproblems have a unique solution only in the limit, but any Tikhonov trajectory tends to the solution of the original problem, which is the unique solution of the strongly monotone equilibrium problem defined on the basis of the regularization bifunction.  相似文献   

15.
This study is intended to provide a numerical algorithm for solving a one-dimensional inverse heat conduction problem. The given heat conduction equation, the boundary conditions, and the initial condition are presented in a dimensionless form. The numerical approach is developed based on the use of the solution to the auxiliary problem as a basis function. To regularize the resultant ill-conditioned linear system of equations, we apply the Tikhonov regularization method to obtain the stable numerical approximation to the solution.  相似文献   

16.
In recent years, Landweber iteration has been extended to solve linear inverse problems in Banach spaces by incorporating non-smooth convex penalty functionals to capture features of solutions. This method is known to be slowly convergent. However, because it is simple to implement, it still receives a lot of attention. By making use of the subspace optimization technique, we propose an accelerated version of Landweber iteration with non-smooth convex penalty which significantly speeds up the method. Numerical simulations are given to test the efficiency.  相似文献   

17.
This paper introduces a new strategy for setting the regularization parameter when solving large‐scale discrete ill‐posed linear problems by means of the Arnoldi–Tikhonov method. This new rule is essentially based on the discrepancy principle, although no initial knowledge of the norm of the error that affects the right‐hand side is assumed; an increasingly more accurate approximation of this quantity is recovered during the Arnoldi algorithm. Some theoretical estimates are derived in order to motivate our approach. Many numerical experiments performed on classical test problems as well as image deblurring problems are presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
19.
In this paper, the Cauchy problem for the Helmholtz equation is investigated. By Green’s formulation, the problem can be transformed into a moment problem. Then we propose a modified Tikhonov regularization algorithm for obtaining an approximate solution to the Neumann data on the unspecified boundary. Error estimation and convergence analysis have been given. Finally, we present numerical results for several examples and show the effectiveness of the proposed method.  相似文献   

20.
One of the most successful methods for solving the least‐squares problem minxAx?b2 with a highly ill‐conditioned or rank deficient coefficient matrix A is the method of Tikhonov regularization. In this paper, we derive the normwise, mixed and componentwise condition numbers and componentwise perturbation bounds for the Tikhonov regularization. Our results are sharper than the known results. Some numerical examples are given to illustrate our results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号