首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In this paper, a new method for the control of input-affine nonlinear switched systems is introduced. The system switching conditions are assumed to be state-dependent, rather than the simpler input-dependent case. The main contribution of this research is that the effects of switched dynamics are interpreted as a model uncertainty bounded within a polynomial of states norms, with unknown coefficients. In order to prevent extra conservativeness, coefficients are tuned adaptively, so that a minimal state-varying bound could be achieved. This is unlike the conventional sliding mode control (SMC) scheme, where the existence of a constant and usually large upper bound must be presumed. To address the challenge of coping with such a new concept of uncertainty, an extended form of the original adaptive fuzzy sliding mode control scheme is proposed. Adaptation laws are used to tune a fuzzy controller and also real-time estimation of the instantaneous bound of uncertainties. Closed-loop stability is guaranteed by proposing a group of multiple Lyapunov functions (MLF) with tunable parameters. Except for the mild condition that the largest difference between the magnitudes of the sub-manifolds of the switched system is bounded by a polynomial of states with uncertain coefficients, the proposed method has the distinct advantage that no information about the dynamic equations or switching conditions is required in the control design stage. The proposed method is applied to the two challenging case studies, depicting the outstanding effectiveness of the method.  相似文献   

2.
This paper addresses the optimal tracking control for switched linear systems with unknown dynamics. We convert the problem into an optimal control problem of the augmented switched systems. In view of the augmented systems, we propose a data-driven switched linear quadratic regular algorithm for obtaining the optimal switching signal under unknown system dynamics. It is proved that the optimal switching signal will not cause Zeno behavior and can make the system stable. Besides, with the proposed algorithm, we just need to identify an autonomous system instead of the original systems, which has fewer parameters to be determined. A numerical example is given to illustrate the validity of the main results.  相似文献   

3.
In this paper, the problems of asymptotical stability and stabilization of a class of switched neutral control systems are investigated. A delay-dependent stability criterion is formulated in term of linear matrix inequalities (LMIs) by using quadratic Lyapunov functions and inequality analysis technique. The corresponding switching rule is obtained through dividing the state space properly. Also, the synthesis of stabilizing state-feedback controllers are done such that the close-loop system is asymptotically stable. Two numerical examples are given to show the proposed method.  相似文献   

4.
This paper deals with the problem of adaptive fuzzy tracking control for a class of switched uncertain nonlinear systems. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, and the adaptive backstepping and dynamic surface control techniques are adopted. First, a new state-dependent switching method is proposed. By introducing convex combination technique and designing a state-dependent switching law, only the solvability of the adaptive tracking control problem for a convex combination of the subsystems is necessary. Second, a new common Lyapunov function with switched adaptive parameters is constructed to reduce the conservatism. Third, to avoid Zeno behavior, a modified state-dependent switching law with dwell time is proposed. It is shown that under the proposed control and switching laws, all the signals of the closed-loop system are bounded and all the state tracking errors can converge to a priori accuracy, even if some subsystems are uncontrollable. Finally, the effectiveness of the proposed method is illustrated through two simulation examples.  相似文献   

5.
In this paper, a class of optimal switching control problems with prespecified order of the sequence of subsystems is considered, where the switching instants are included in the cost functional. Both the switching instants and the control function are to be chosen such that the cost functional is minimized. Through the discretization of the control space, each control component is approximated by a piecewise constant function. The partition points and the heights of each of these piecewise constant functions are taken as decision varibles. Using the control parameterization enhancing transform, we map both types of switching instants into preassigned knot points via the introduction of an additional control, known as the enhancing control. In this way, we construct a sequence of approximate optimal parameter selection problems with fixed switching time points. We then show that these approximate optimal parameter selection problems are solvable as mathematical programming problems. The convergence analysis of this approximation is investigated. Two examples are solved using the proposed method so as to demonstrate the effectiveness of the method proposed.  相似文献   

6.
This paper focuses on the design of both periodic time- and event-triggered control laws of switched affine systems using a hybrid dynamical system approach. The novelties of this paper rely on the hybrid dynamical representation of this class of systems and on a free-matrix min-projection control, which relaxes the structure of the usual Lyapunov matrix-based min-projection control. This contribution also presents an extension of the usual periodic time-triggered implementation to the event-triggered one, where the control input updates are permitted only when a particular event is detected. Together with the definition of an appropriate optimization problem, a stabilization result is formulated to ensure the uniform global asymptotic stability of an attractor for both types of controllers, which is a neighborhood of the desired operating point. Finally, the proposed method is evaluated through a numerical example.  相似文献   

7.
In this paper, we investigate the stability properties of a general class of nonautonomous switched nonlinear systems. Sufficient conditions for uniform stability, uniform asymptotic stability and uniform exponential stability are derived via multiple Lyapunov functions. Our results provide stability criteria for switched systems with both stable and unstable subsystems. Particularly, our results include some existing results as special cases or improve those in the literature. Several numerical examples are worked out to illustrate our results.  相似文献   

8.
9.
The problem of fixed-time stability of switched systems is studied. With the aid of the multiple Lyapunov function method, constraints on switching signals are derived under which global fixed-time stability of zero solutions of considered systems can be guaranteed. Sufficient conditions of fixed-time stability for Persidskii-type systems are obtained. The developed approaches are applied to the problem of the fixed-time deployment of mobile agents over a line segment under protocols with switched communication topology. Efficiency of the obtained results is demonstrated by a numerical simulation.  相似文献   

10.
In this work, stability analysis for a class of switched nonlinear time-delay systems is performed by applying Lyapunov–Krasovskii and Lyapunov–Razumikhin approaches. It is assumed that each subsystem in the family is homogeneous (of positive or negative degree) and asymptotically stable in the delay-free setting. The cases of existence of a common or multiple Lyapunov–Krasovskii functionals and a common Lyapunov–Razumikhin function are explored. The scenarios with synchronous and asynchronous switching are considered, and it is demonstrated that depending on the kind of commutation, one of the frameworks for stability analysis outperforms another, but finally leading to similar restrictions for both types of switching (despite the asynchronous one seems to be more demanded). The obtained results are applied to mechanical systems having restoring forces with real-valued powers.  相似文献   

11.
This paper considers the problem of fixed-time stability (FTS) for switched nonlinear time-varying (NTV) systems. Firstly, three sufficient conditions are proposed to verify the FTS of NTV systems by using the improved Lyapunov function, which has a tighter upper bound of time derivative. Then, two FTS conditions are given for the switched NTV system by extending the obtained results, moreover, a switching strategy is also provided by using the minimum dwell time method. Finally, the obtained results are extended to study the FTS of impulsive NTV systems. Comparing with the existing results, the obtained conditions have two improvements: (1) provides a more accurate estimate for the upper bound of settling time of NTV systems, and (2) allows the Lyapunov function to increase at the switching instant of switched NTV (or impulsive NTV) systems. Two numerical examples are given to illustrate the theoretical results.  相似文献   

12.
In this paper, the stabilization problem of switched control systems with time delay is investigated for both linear and nonlinear cases. First, a new global stabilizability concept with respect to state feedback and switching law is given. Then, based on multiple Lyapunov functions and delay inequalities, the state feedback controller and the switching law are devised to make sure that the resulting closed-loop switched control systems with time delay are globally asymptotically stable and exponentially stable.  相似文献   

13.
In this note, a common quadratic Lyapunov function is explicitly calculated for a linear hybrid system described by a family of simultaneously triangularizable matrices. The explicit construction of such a function allows not only obtaining an estimate of the convergence rate of the exponential stability of the switched system under arbitrary switching but also calculating an upper bound for the output during its transient response. Furthermore, the presented result is then extended to the case where the system is affected by parametric uncertainty, providing the corresponding results in terms of the nominal matrices and uncertainty bounds.  相似文献   

14.
In this paper, we consider an optimal control problem of switched systems with input and state constraints. Since the complexity of such constraint and switching laws, it is difficult to solve the problem using standard optimization techniques. In addition, although conjugate gradient algorithms are very useful for solving nonlinear optimization problem, in practical implementations, the existing Wolfe condition may never be satisfied due to the existence of numerical errors. And the mode insertion technique only leads to suboptimal solutions, due to only certain mode insertions being considered. Thus, based on an improved conjugate gradient algorithm and a discrete filled function method, an improved bi-level algorithm is proposed to solve this optimization problem. Convergence results indicate that the proposed algorithm is globally convergent. Three numerical examples are solved to illustrate the proposed algorithm converges faster and yields a better cost function value than existing bi-level algorithms.  相似文献   

15.
This paper investigates the problem of event-triggered tracking control for switched networked nonlinear systems with asymmetric time-varying output constraints. To handle the output constraints, an output-dependent generic constraint function is constructed to describe relationship between the output and the performance requirement. Meanwhile, an event-triggering rule is designed to reduce communication frequency between the controller and the actuator, thereby reducing the burden of the network communication. Based on the common Lyapunov function method and event-triggered control strategy, an adaptive control method is designed, which can guarantee that the closed-loop signals are bounded and avoid the Zeno behavior. Different from existing results considering constraints, the proposed scheme not only relaxes the restricted condition of constraint boundaries but also both the cases with and without output constraints can be addressed simultaneously. Furthermore, the stability of the system can be guaranteed by the small-gain technique. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed scheme.  相似文献   

16.
This paper deals with the stability analysis of a class of uncertain switched systems on non-uniform time domains. The considered class consists of dynamical systems which commute between an uncertain continuous-time subsystem and an uncertain discrete-time subsystem during a certain period of time. The theory of dynamic equations on time scale is used to study the stability of these systems on non-uniform time domains formed by a union of disjoint intervals with variable length and variable gap. Using the concept of common Lyapunov function, sufficient conditions are derived to guarantee the asymptotic stability of this class of systems on time scale with bounded graininess function. The proposed scheme is used to study the leader–follower consensus problem under intermittent information transmissions.  相似文献   

17.
This study considers the problem of finite-time filtering for switched linear systems with a mode-dependent average dwell time. By introducing a newly augmented Lyapunov–Krasovskii functional and considering the relationship between time-varying delays and their upper delay bounds, sufficient conditions are derived in terms of linear matrix inequalities such that the filtering error system is finite-time bounded and a prescribed noise attenuation level is guaranteed for all non-zero noises. Thus, a finite-time filter is designed for switched linear systems with a mode-dependent average dwell time. Finally, an example is given to illustrate the efficiency of the proposed methods.  相似文献   

18.
In this paper, smooth output feedback controllers are presented to stabilize a class of planar switched nonlinear systems with asymmetric output constraints (AOCs). A new common barrier Lyapunov function (CBLF) is developed to prevent the switched system from violating AOCs. Combining the adding a power integrator technique (APIT) and the CBLF, state feedback controllers are designed. Then, reduced-order nonlinear observers are constructed and smooth output feedback controllers are proposed to globally stabilize planar switched nonlinear systems under arbitrary switchings. Meanwhile, the system output meets the prescribed AOCs during operation. The method proposed in this paper is a unified tool because it works not only for switched nonlinear systems with asymmetric or symmetric output constrains but also for those without output constraints. Simulations are presented to verify the proposed method.  相似文献   

19.
We provide a new simple proof to the celebrated theorem of Poltoratskii concerning ratios of Borel transforms of measures. That is, we show that for any complex Borel measure μ on and any a.e. w.r.t. μsing, where μsing is the part of μ which is singular with respect to Lebesgue measure and F denotes a Borel transform, namely, and Fμ(z)=∫(xz)−1(x).  相似文献   

20.
Stability is fundamental to ensure the operation of control system, but optimality is the ultimate goal to achieve the maximum performance. This paper investigates an event-triggered pinning optimal consensus control for switched multi-agent system (SMAS) via a switched adaptive dynamic programming (ADP) method. The technical contribution mainly lies in two aspects. On the one hand, in order to optimize the control performance and ensure the consensus, the switched local value function (SLVF) and the minimum-error switching law are constructed. Based on SLVF, an algorithm of switched ADP policy iteration is proposed, and its convergence and optimality are proved. On the other hand, considering that it is impractical to install a controller for each agent in reality, a pinning strategy is developed to guide the setting of the ADP controller, which can reduce the waste of control resources. A new condition is constructed to determine the minimum number of controlled vertices of the SMAS. Lastly, a numerical example is given to verify the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号