首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nonperturbative QCD vacuum at finite temperature and a finite baryon density in an external magnetic field is studied. Equations that relate nonperturbative condensates to the thermodynamic pressure for T ≠ 0, μ q ≠ 0, and H ≠ 0 are obtained, and low-energy theorems are derived.  相似文献   

2.
The norperturbative QCD vacuum at finite temperature in a external magnetic field is studied. Equations that relate nonperturbative QCD condensates at finite temperature to the thermodynamic pressure at T ≠ 0 and H ≠ 0 are obtained, and low-energy theorems are derived. The free energy of the QCD vacuum in the hadronic phase at H ≠ 0 is calculated, and expressions for the quark and gluon condensates are obtained. Various limiting cases for the behavior of the condensates at low and high temperatures and in weak and strong magnetic fields are investigated. A new interesting phenomenon that consists in the freezing of the quark condensate by a magnetic field is found. The character of spontaneous chiral-symmetry breaking in finite-temperature QCD in a magnetic field is studied. For this purpose, the Gell-Mann-Oakes-Renner formula relating the pion mass M π and the axial-vector coupling constant F π to the quark condensate is derived at T ≠ 0 and H ≠ 0. It is shown that this formula preserves its form at finite temperature after taking into account a magnetic field—that is, no additional terms independent of T and H appear. Thus, the scheme of soft chiral-symmetry breaking remains unchanged. The quark-hadron phase transition in QCD in a magnetic field is studied. It is shown that the phase-transition temperature becomes lower than that in the case of zero magnetic field.  相似文献   

3.
QCD at finite temperature and density is becoming increasingly important for various experimental programmes, ranging from heavy ion physics to astro-particle physics. The non-perturbative nature of non-abelian quantum field theories at finite temperature leaves lattice QCD as the only tool by which we may hope to come to reliable predictions from first principles. This requires careful extrapolations to the thermodynamic, chiral and continuum limits in order to eliminate systematic effects introduced by the discretization procedure. After an introduction to lattice QCD at finite temperature and density, its possibilities and current systematic limitations, a review of present numerical results is given. In particular, plasma properties such as the equation of state, screening masses, static quark free energies and spectral functions are discussed, as well as the critical temperature and the QCD phase structure at zero and finite density.  相似文献   

4.
A. Gorsky 《JETP Letters》2000,71(6):239-241
We discuss the spectral density of the massless Dirac operator at small eigenvalues and quark masses compatible with the restrictions imposed by the low-energy theorems in QCD. The sum rule for its derivative with respect to the quark mass is found.  相似文献   

5.
We review some basics of AdS/QCD following a non-standard path and list a few results from AdS/QCD or holographic QCD. The non-standard path here is to use the analogy of the way one obtains an effective model of QCD like linear sigma model and the procedure to construct an AdS/QCD model based on the AdS/CFT dictionary.  相似文献   

6.
《Nuclear Physics B》2002,620(1-2):290-314
We study QCD with two colors and quarks in the fundamental representation at finite baryon density in the limit of light-quark masses. In this limit the free energy of this theory reduces to the free energy of a chiral Lagrangian which is based on the symmetries of the microscopic theory. In earlier work this Lagrangian was analyzed at the mean-field level and a phase transition to a phase of condensed diquarks was found at a chemical potential of half the diquark mass (which is equal to the pion mass). In this article we analyze this theory at next-to-leading order in chiral perturbation theory. We show that the theory is renormalizable and calculate the next-to-leading order free energy in both phases of the theory. By deriving a Landau–Ginzburg theory for the order parameter we show that the finite one-loop contribution and the next-to-leading order terms in the chiral Lagrangian do not qualitatively change the phase transition. In particular, the critical chemical potential is equal to half the next-to-leading order pion mass, and the phase transition is of second order.  相似文献   

7.
8.
We investigate the kaon production at finite temperature and baryon density by means of an effective relativistic mean-field model with the inclusion of the full octet of baryons. Kaons are considered taking into account of an effective chemical potential depending on the self-consistent interaction between baryons. The obtained results are compared with a minimal coupling scheme, calculated for different values of the anti-kaon optical potential.  相似文献   

9.
10.
Studies of QCD thermodynamics on the lattice now can be performed with an almost realistic quark mass spectrum and on quite large lattices. This will soon allow a controlled extrapolation to the continuum limit. We present recent results on the QCD equation of state, discuss deconfining and chiral symmetry restoring aspects of the QCD transition at vanishing chemical potential and show results on baryon number, electric charge and strangeness fluctuations. We briefly discuss the generic structure of Taylor expansion coefficients in the vicinity of the chiral phase transition and comment on the determination of the anticipated chiral critical point within the framework of Taylor expansions of the QCD partition function.  相似文献   

11.
A high-density diquark phase seems to be a generic feature of QCD. If so it should also be reproduced by random matrix models. We discuss a specific one in which the random matrix elements of the Dirac operator are supplemented by a finite chemical potential and by non-random elements which model the formation of instanton-anti-instanton molecules. Comparing our results to those found in a previous investigation by Vanderheyden and Jackson we find additional support for our starting assumption, namely that the existence of a high-density diquark phase is common to all QCD-like model. Received: 20 February 2001 / Accepted: 24 April 2001  相似文献   

12.
We consider the influence of the perturbative bulk viscosity on the evolution of the Hubble parameter in the QCD era of the early Universe. For the geometry of the Universe we assume the homogeneous and isotropic Friedmann‐Lemaitre‐Robertson‐Walker metric, while the background matter is assumed to be characterized by barotropic equations of state, obtained from recent lattice QCD simulations, and heavy‐ion collisions, respectively. Taking into account a perturbative form for the bulk viscosity coefficient, we obtain the evolution of the Hubble parameter, and we compare it with its evolution for an ideal (non‐viscous) cosmological matter. A numerical solution for the viscous QCD plasma in the framework of the causal Israel‐Stewart thermodynamics is also obtained. Both the perturbative approach and the numerical solution qualitatively agree in reproducing the viscous corrections to the Hubble parameter, which in the viscous case turns out to be slightly different as compared to the non‐viscous case. Our results are strictly limited within a very narrow temperature‐ or time‐interval in the QCD era, where the quark‐gluon plasma is likely dominant.  相似文献   

13.
14.
Quantum chromodynamics is studied at finite temperatures and densities using the temperature Green functions method. For the Green functions the renormalized Schwinger-Dyson equations are obtained and their qualitative properties are discussed. The equality of the renormalization constants for the equations obtained at T, μ ≠ 0 with those for quantum field theory is pointed out. General properties of the gluon polarization tensor are investigated at T, μ ≠ 0. The temperature Green functions are calculated within the one-loop approximation using both relativistic and axial gauges. The fulfilment of the Slavnov-Taylor identities is verified. The asymptotic behaviour of the polarization tensor at T, μ ≠ 0 is established and the excitation spectrum of quark-gluon plasma is found. Both Fermi and Bose excitations are considered and the gauge invariance of the spectra is demonstrated. The renormalization group extension of the dispersion laws into the regions of high temperatures and densities is presented. The exact representation of the thermodynamical potential in QCD is found in terms of the temperature Green functions. For the quark-gluon plasma the thermodynamical potential is calculated with the g3-term taken into account. The equation of state of the hot quark-gluon plasma is found and its properties are discussed. The complete evolutional diagram of the hadronic matter is outlined. The phase curve asymptotics, which put bounds on the quark-gluon plasma domain, are found for the two limiting cases (μ = 0, TT0; T = 0, μ → μ0). The phase transition of the hot quark-gluon plasma placed in external Abelian field is studied. The instability of such plasma has been found and the program of its stabilization is indicated. The infrared behaviour of the non-Abelian gauge theory is studied for finite temperatures when power divergencies are essential. The propagator of transverse gluons is shown to be singular for momenta |p| ˜ g2T and this cannot be avoided by summing the simplest bubble chains. The infrared asymptotic behaviour of the tree-gluon vertex is found and the results obtained are checked using the Slavnov-Taylor identities. The Green functions asymptotics found indicate either an instability of the quark-gluon plasma in the infrared momentum domain or the inconsistency of the perturbational methods. A non-perturbative approach to the infrared problem in QCD is developed within the axial gauge. The closed equations for the structure functions that determine the gluon polarization tensor are obtained by using the Slavnov-Taylor identities to found approximately the three-gluon vertex. It is shown that the solution of the equations obtained by iterations does not remove the infrared singularity from the temperature Green functions. The nonperturbative solution of such equations is discussed.  相似文献   

15.
We consider the possibility that color deconfinement and chiral symmetry restoration do not coincide in dense baryonic matter at low temperature. As a consequence, a state of massive “constituent” quarks would exist as an intermediate phase between confined nuclear matter and the plasma of deconfined massless quarks and gluons. We discuss the properties of this state and its relation to the recently proposed quarkyonic matter.  相似文献   

16.
The heavy quarkonium spectrum of Two Color QCD (QC2D) at non-zero quark chemical potential μ and temperature T   with μ/T?1μ/T?1 has been calculated in both S- and P-wave channels using a lattice non-relativistic formulation of QC2D. As μ is varied, the quarkonium spectra reveal three separate regions, corroborating previous findings that there are three distinct physical regimes of QC2D at low temperature and high baryon density: hadronic matter, quark/quarkyonic matter, and deconfined matter. The results are interpreted in terms of the formation of heavy-light Qq states in the two-color baryonic medium.  相似文献   

17.
QCD at finite isospin chemical potential mu(I) has no fermion sign problem and can be studied on the lattice. We solve this theory analytically in two limits: at low mu(I), where chiral perturbation theory is applicable, and at asymptotically high mu(I), where perturbative QCD works. At low isospin density the ground state is a pion condensate, whereas at high density it is a Fermi liquid with Cooper pairing. The pairs carry the same quantum numbers as the pion. This leads us to conjecture that the transition from hadron to quark matter is smooth, which passes several tests. Our results imply a nontrivial phase diagram in the space of temperature and chemical potentials of isospin and baryon number.  相似文献   

18.
19.
In this Letter we make use of the Background Field Method (BFM) to compute the effective potential of an SU(2)SU(2) gauge field theory, in the presence of chemical potential and temperature. The main idea is to consider the chemical potential as the background field. The gauge fixing condition required by the BFM turns out to be exactly the one we found in a previous article in a different context.  相似文献   

20.
The self-consistent mean field approximation of the two-flavor NJL model,with a free parameter a to reflect the competition between the "direct" channel and the "exchange" channel,is employed to study the QCD phase structure at finite iso spin chemical potential μ_I,finite bary on chemical potential μ_B and finite temperature T,and especially to study the location of the QCD critical point.Our results show that in order to match the corresponding lattice results of iso spin density and energy density,the contributions of the "exchange" channel need to be considered in the framework of the NJL model,and a weighting factor α=0.5 should be taken.It is also found that for fixed isospin chemical potentials,the lower temperature of the phase transition is obtained with increasing a in the T-μ_I plane,and the largest difference of the phase transition temperature with different a's appears at μ_I~1.5 mπ.At μ_I=0 the temperature of the QCD critical end point(CEP) decreases with increasing a,while the critical baryon chemical potential increases.At high isospin chemical potential(μ_I=500 MeV),the temperature of the QCD tricritical point(TCP) increases with increasing a,and in the low temperature regions the system will transition from the pion superfluidity phase to the normal phase as μ_B increases.At low density,the critical temperature of the QCD phase transition with different a's rapidly increases with μ_I at the beginning,and then increases smoothly around μ_I 300 MeV.In the high baryon density region,the increase of the iso spin chemical potential will raise the critical baryon chemical potential of the phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号