首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider tangentially regular solution of the Dirichlet problem for an homogeneous strongly elliptic operator with constant coefficients, on an infinite vertical polyhedral cylinder based on a bounded polygonal domain in the horizontal xy-plane. The usual complex blocks of singularities in the non-tensor product singular decomposition of the solution are made more explicit by a suitable choice of the regularizing kernel. This permits to design a well-posed semi-discrete singular function method (SFM), which differs from the usual SFM in that the dimension of the space of trial and test functions is infinite. Partial Fourier transform in the z-direction (of edges) enables us to overcome the difficulty of an infinite dimension and to obtain optimal orders of convergence in various norms for the semi-discrete solution. Asymptotic error estimates are also proved for the coefficients of singularities. For practical computations, an optimally convergent full-disc! ! ! retization approach, which consists in coupling truncated Fourier series in the z-direction with the SFM in the xy-plane, is implemented. Other good (though not optimal) schemes, which are based on a tensor product form of singularities are investigated. As an illustration of the results, we consider the Laplace operator.  相似文献   

2.
In 1852 Lame [1] formulated the first fundamental problem of the theory of elasticity for a rectangular parallelepiped. An approximate solution to this problem was given by Filonenko-Borodich [2 and 3] who used Castigliano's variational principle. Later Mishonov [4] obtained an approximate solution to Lamé's problem in the form of divergent triple Fourier series. These series contain constants which are found from infinite systems of linear equations. Teodorescu [5] has considered a particular case of Lame's problem. Using his own method the author solves the problem in the form of double series analogous to those used in [6 to 8] and by Baida in [9 and 10] in solving problems on the equilibrium of a rectangular parallelepiped. The solution of the problem reduces to three infinite system of linear equations and the author asserts that these infinite systems are regular. It is shown in Section 5 that the infinite systems obtained by Teodorescu, on the other hand, will not be regular.

In the references mentioned above which investigate Lamé's problem the authors confine their attention either to obtaining a solution by an approximate method, or to reducing the solution process to one of obtaining infinite systems, leaving these uninvestigated. It must be emphasized that the main difficulty in solving this problem lies in investigating the infinite systems obtained which are significantly different from the infinite systems of the corresponding plane problem.

In this paper a solution is given to the first fundamental problem of the theory of elasticity for a rectangular parallelepiped with prescribed external stresses on the surface (Sections 2, 3 and 4). For the solution of this problem the author has used a form of the general solution of the homogeneous Lamé equations which contains five arbitrary harmonic functions and which constitutes a generalization of the familiar Papkovich-Neuber solution (Section 1). The solution is expressed in the form of double series containing four series of unknown constants which can be found from four infinite systems of linear algebraic equations. The infinite systems of linear equations obtained is studied for values of Poisson's ratio within the range 0 < σ ≤ 0.18. It is shown that for these values of Poisson's ratio the infinite systems are quasi-fully regular.  相似文献   


3.
Summary The present paper is concerned with finding an effective polynomial solution to a class of dual integral equations which arise in many mixed boundary value problems in the theory of elasticity. The dual integral equations are first transformed into a Fredholm integration equation of the second kind via an auxiliary function, which is next reduced to an infinite system of linear algebraic equations by representing the unknown auxiliary function in the form of an infinite series of Jacobi polynomials. The approximate solution of this infinite system of equations can be obtained by a suitable truncation. It is shown that the unknown function involving the dual integral equations can also be expressed in the form of an infinite series of Jacobi polynomials with the same expansion coefficients with no numerical integration involved. The main advantage of the present approach is that the solution of the dual integral equations thus obtained is numerically more stable than that obtained by reducing themdirectly into an infinite system of equations, insofar as the expansion coefficients are determined essentially by solving asecond kind integral equation.  相似文献   

4.
In this paper, the weakly singular Volterra integral equations with an infinite set of solutions are investigated. Among the set of solutions only one particular solution is smooth and all others are singular at the origin. The numerical solutions of this class of equations have been a difficult topic to analyze and have received much previous investigation. The aim of this paper is to present a numerical technique for giving the approximate solution to the only smooth solution based on reproducing kernel theory. Applying weighted integral, we provide a new definition for reproducing kernel space and obtain reproducing kernel function. Using the good properties of reproducing kernel function, the only smooth solution is exactly expressed in the form of series. The n-term approximate solution is obtained by truncating the series. Meanwhile, we prove that the derivative of approximation converges to the derivative of exact solution uniformly. The final numerical examples compared with other methods show that the method is efficient.  相似文献   

5.
This paper derives analytical solutions for the two dimensional and the three dimensional Burgers' equation. The two-dimensional and three-dimensional Burgers' equation are defined in a square and a cubic space domain, respectively, and a particular set of boundary and initial conditions is considered. The analytical solution for the two dimensional Burgers' equation is given by the quotient of two infinite series which involve Bessel, exponential, and trigonometric functions. The analytical solution for the three dimensional Burgers' equation is given by the quotient of two infinite series which involve hypergeometric, exponential, trigonometric and power functions. For both cases, the solutions can describe shock wave phenomena for large Reynolds numbers (Re ≥ 100), which is useful for testing numerical methods.  相似文献   

6.
Numerical conditions are given in an infinite and semiinfinite plate (heat insulator), which is connected by a vertical two-sided connection only with an elastic halfspace, in the interior of which is a concentrated source of heat, which generates a stationary heat field. The problem is reduced to the solution of an integral-differential equation of the Wiener-Hopf type with respect to the Fourier transform of the contact stress. Its exact solution is constructed using the factorization method, and the final solution is represented by a series with respect to Chebyshev-Laguerre polynomials. Calculations of bending moments and transverse forces are given in an infinite plate, semiinfinite, and infinite beam-rolling plates.Translated from Dinamicheskie Sistemy, No. 7, pp. 114–123, 1988.  相似文献   

7.
It is known in quantitative sociodynamics that human migration in a bounded domain can be described by a nonlinear integro-partial differential equation, which is called the master equation. This equation has its origin in statistical physics. At a physical level of rigor we can formally expand the nonlinear integral operator contained in the master equation into an infinite series whose terms are nonlinear partial differential operators. The infinite series thus obtained is called the Kramers–Moyal expansion. The purpose of this paper is to give a mathematical justification of this formal expansion.  相似文献   

8.
A useful recursive formula for obtaining the infinite sums of even order harmonic series Σn=1 (1/n2k), k = 1, 2, …, is derived by an application of Fourier series expansion of some periodic functions. Since the formula does not contain the Bernoulli numbers, infinite sums of even order harmonic series may be calculated by the formula without the Bernoulli numbers. Infinite sums of a few even order harmonic series, which are calculated using the recursive formula, are tabulated for easy reference.  相似文献   

9.
This paper investigates a stochastic Lotka-Volterra system with infinite delay, whose initial data comes from an admissible Banach space Cr. We show that, under a simple hypothesis on the environmental noise, the stochastic Lotka-Volterra system with infinite delay has a unique global positive solution, and this positive solution will be asymptotic bounded. The asymptotic pathwise of the solution is also estimated by the exponential martingale inequality. Finally, two examples with their numerical simulations are provided to illustrate our result.  相似文献   

10.
The object of this paper is to develop the ideas introduced in the author's paper [1] on matrices which generate families of polynomials and associated infinite series. A family of infinite one-subdiagonal non-commuting matrices Qm is defined, and a number of identities among its members are given. The matrix Q1 is applied to solve a problem concerning the derivative of a family of polynomials, and it is shown that the solution is remarkably similar to a conventional solution employing a scalar generating function. Two sets of infinite triangular matrices are then defined. The elements of one set are related to the terms of Laguerre, Hermite, Bernoulli, Euler, and Bessel polynomials, while the elements of the other set consist of Stirling numbers of both kinds, the two-parameter Eulerian numbers, and numbers introduced in a note on inverse scalar relations by Touchard. It is then shown that these matrices are related by a number of identities, several of which are in the form of similarity transformations. Some well-known and less well-known pairs of inverse scalar relations arising in combinatorial analysis are shown to be derivable from simple and obviously inverse pairs of matrix relations. This work is an explicit matrix version of the umbral calculus as presented by Rota et al. [24-26].  相似文献   

11.
Jarosław Rusin 《PAMM》2016,16(1):229-230
In this paper, the dynamic response of an Euler-Bernoulli beam and string system traversed by a constant moving force is considered. The force is moving with a constant velocity on the top beam. The complex system is finite, simply supported, parallel one upon the other and continuously coupled by a linear Winkler elastic element. The classical solution of the response of a beam-string system subjected to a force moving with a constant velocity has a form of an infinite series. The main goal of this paper is to show that in the considered case the aperiodic part of the solution can be presented in a closed, analytical form instead of an infinite series. The presented method of finding the solution in a closed, analytical form is based on the observation that the solution of the system of partial differential equations in the form of an infinite series is also a solution of an appropriate system of ordinary differential equations. The dynamic influence lines of complex systems may be used for the analysis the complex models of moving load. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A new recursive methodology is introduced to solve anisotropic thin plates bending problems, which is based on three concepts: (a) the plate differential operator additively decomposed obeying a material constitutive hierarchy; (b) the plate displacement field expanded into an infinite series and (c) an homotopy-like scheme applied to determine each term of the series. The pb-2 Rayleigh–Ritz Method is adopted to construct the solution space. Convergence conditions are presented and related to the differential operator decomposition and material’s anisotropy degree. Different cases of geometry, loading and boundary conditions were studied using the methodology and excellent agreement with available solutions was found.  相似文献   

13.
The problem of a thin spherical linearly elastic shell perfectlybonded to an infinite linearly elastic medium is considered.A constant axisymmetric stress field is applied at infinityin the matrix, and the displacement and stress fields in theshell and matrix are evaluated by means of harmonic potentialfunctions. In order to examine the stability of this solution,the buckling problem of a shell which experiences this deformationis considered. Using Koiter's nonlinear shallow shell theory,restricting buckling patterns to those which are axisymmetricand using the Rayleigh–Ritz method by expanding the bucklingpatterns in an infinite series of Legendre functions, an eigenvalueproblem for the coefficients in the infinite series is determined.This system is truncated and solved numerically in order toanalyse the behaviour of the shell as it undergoes bucklingand to identify the critical buckling stress in two cases, namely,where the shell is hollow and the stress at infinity is eitheruniaxial or radial.  相似文献   

14.
A spectral element method is described which enables Poisson problems defined in irregular infinite domains to be solved as a set of coupled problems over semi-infinite rectangular regions. Two choices of trial functions are considered, namely the eigenfunctions of the differential operator and Chebyshev polynomials. The coefficients in the series expansions are obtained by imposing weak C1 matching conditions across element interfaces. Singularities at re-entrant corners are treated by a post-processing technique which makes use of the known asymptotic behaviour of the solution at the singular point. Accurate approximations are obtained with few degrees of freedom.  相似文献   

15.
We consider summation of some finite and infinite functional p-adic series with factorials. In particular, we are interested in the infinite series which are convergent for all primes p, and have the same integer value for an integer argument. In this paper, we present rather large class of such p-adic functional series with integer coefficients which contain factorials. By recurrence relations, we constructed sequence of polynomials A k (n; x) which are a generator for a few other sequences also relevant to some problems in number theory and combinatorics.  相似文献   

16.
This paper is concerned with the determination of the thermoelastic displacement, stress, conductive temperature, and thermodynamic temperature in an infinite isotropic elastic body with a spherical cavity. A general solution to the problem based on the two-temperature generalized thermoelasticity theory (2TT) is introduced. The theory of thermal stresses based on the heat conduction equation with Caputo’s time-fractional derivative of order α is used. Some special cases of coupled thermoelasticity and generalized thermoelasticity with one relaxation time are obtained. The general solution is provided by using Laplace’s transform and state-space techniques. It is applied to a specific problem when the boundary of the cavity is subjected to thermomechanical loading (thermal shock). Some numerical analyses are carried out using Fourier’s series expansion techniques. The computed results for thermoelastic stresses, conductive temperature, and thermodynamic temperature are shown graphically and the effects of two-temperature and fractional-order parameters are discussed.  相似文献   

17.
A rigorous solution is presented for the problem of diffraction of plane harmonic sound waves by a cavity formed by a terminated rigid cylindrical waveguide of finite length whose interior surface is lined by an acoustically absorbent material. The solution is obtained by a modification of the Wiener-Hopf technique and involve an infinite series of unknowns, which are determined from an infinite system of linear algebraic equations. Numerical solution of this system is obtained for various values of the parameters of the problem and their effects on the diffraction phenomenon are shown graphically.  相似文献   

18.
The diffraction of SH-waves by an infinite periodic system of cuts in an infinite medium possessing nonhomogeneity has been studied. Assuming that shear modulus and density vary, the problem of diffraction of SH-waves by the periodic system of cuts depends on the solution of dual series equations which ultimately reduces to the solution of an infinite system of algebraic equations.  相似文献   

19.
A rigorous solution is presented for the problem of diffraction of plane harmonic sound waves by a cavity formed by a terminated rigid cylindrical waveguide of finite length whose interior surface is lined by an acoustically absorbent material. The solution is obtained by a modification of the Wiener-Hopf technique and involve an infinite series of unknowns, which are determined from an infinite system of linear algebraic equations. Numerical solution of this system is obtained for various values of the parameters of the problem and their effects on the diffraction phenomenon are shown graphically.Received: December 12, 2001  相似文献   

20.
Considering a fractional derivative model the unsteady flow of an Oldroyd-B fluid between two infinite coaxial circular cylinders is studied by using finite Hankel and Laplace transforms. The motion is produced by the inner cylinder which is subject to a time dependent longitudinal shear stress at time t = 0+. The solution obtained under series form in terms of generalized G and R functions, satisfy all imposed initial and boundary conditions. The corresponding solutions for ordinary Oldroyd-B, generalized and ordinary Maxwell, and Newtonian fluids are obtained as limiting cases of our general solutions. The influence of pertinent parameters on the fluid motion as well as a comparison between models is illustrated graphically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号