首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray photoelectron spectroscopy (XPS) has been used to characterize the oxidation of a clean Ni(Pt)Si surface under two distinct conditions: exposure to a mixed flux of atomic and molecular oxygen (O + O2; PO+O2 = 5 × 10−6 Torr) and pure molecular oxygen (O2; PO2 = 10−5 Torr) at ambient temperatures. Formation of the clean, stoichiometric (nickel monosilicide) phase under vacuum conditions results in the formation of a surface layer enriched in PtSi. Oxidation of this surface in the presence of atomic oxygen initially results in formation of a silicon oxide overlayer. At higher exposures, kinetically limited oxidation of Pt results in Pt silicate formation. No passivation of oxygen uptake of the sample is observed for total O + O2 exposure <8 × 104 L, at which point the average oxide/silicate overlayer thickness is 23 (3) Å (uncertainty in the last digit in parentheses). In contrast, exposure of the clean Ni(Pt)Si surface to molecular oxygen only (maximum exposure: 5 × 105 L) results in slow growth of a silicon oxide overlayer, without silicate formation, and eventual passivation at a total average oxide thickness of 8(1) Å, compared to a oxide average thickness of 17(2) Å (no silicate formation) for the as-received sample (i.e., exposed to ambient.) The aggressive silicon oxidation by atomic oxygen, results in Ni-rich silicide formation in the substrate and the kinetically limited oxidation of the Pt.  相似文献   

2.
Physical and electrical properties of sputtered deposited Y2O3 films on NH4OH treated n-GaAs substrate are investigated. The as-deposited films and interfacial layer formation have been analyzed by using X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). It is found that directly deposited Y2O3 on n-GaAs exhibits excellent electrical properties with low frequency dispersion (<5%), hysteresis voltage (0.24 V), and interface trap density (3 × 1012 eV−1 cm−2). The results show that the deposition of Y2O3 on n-GaAs can be an effective way to improve the interface quality by the suppression on native oxides formation, especially arsenic oxide which causes Fermi level pinning at high-k/GaAs interface. The Al/Y2O3/n-GaAs stack with an equivalent oxide thickness (EOT) of 2.1 nm shows a leakage current density of 3.6 × 10−6 A cm−2 at a VFB of 1 V. While the low-field leakage current conduction mechanism has been found to be dominated by the Schottky emission, Poole-Frenkel emission takes over at high electric fields. The energy band alignment of Y2O3 films on n-GaAs substrate is extracted from detailed XPS measurements. The valence and conduction band offsets at Y2O3/n-GaAs interfaces are found to be 2.14 and 2.21 eV, respectively.  相似文献   

3.
The electrical properties of the Cu/n-InP and Al/n-InP Schottky barrier diodes (SBDs) with and without the interfacial oxide layer have been investigated by using current-voltage (I-V) measurements. The oxide layer on chemically cleaned indium phosphide (InP) surface has been obtained by exposure to water vapor at 1 ml/min at 200 °C before metal evaporation. The chemical composition of surface oxides grown on the InP is investigated using X-ray photoelectron spectroscopy (XPS). Phosphorus is present as In(PO3)3, InPO4, P2O5 and P4O10. The values of 0.437 ± 0.007 and 0.438 ± 0.003 eV for the barrier height of the reference Cu/n-InP and Al/n-InP SBDs were obtained, respectively. Furthermore, the values of 0.700 ± 0.030 and 0.517 ± 0.023 eV for the barrier height of the oxidized Cu/n-InP and Al/n-InP SBD were obtained, respectively. The transport properties of the metal-semiconductor contacts have been observed to be significantly affected by the presence of the interfacial oxide layer. Devices built on the oxidized surfaces show improved characteristics compared with those built on chemically cleaned surfaces. The chemical reactivity of the metal with oxide and n-InP is important to the formation of the Schottky barriers. The reactive metal Al gave a low barrier height due to the reduction of oxide and reaction with InP. The transmission coefficients for the oxidized Cu/n-InP and Al/n-InP are equal to 2.23 × 10−5 and 4.60 × 10−2, respectively.  相似文献   

4.
N-doped ZnO films were produced using N2 as N source by metal-organic chemical vapor deposition (MOCVD) system which has been improved with radio-frequency (RF)-assisted equipments. The data of secondary ion mass spectroscopy (SIMS) indicate that the concentration of N in N-doped ZnO films is around 5 × 1020 cm−3, implying that sufficient incorporation of N into ZnO can be obtained by RF-assisted equipment. On this basis, the structural, optical and electrical properties of Al-N codoped ZnO films were studied. Then, the effect of RF power on crystal quality, surface morphologies, optical properties was analyzed using X-ray diffraction, atomic force microscopy and photo-luminescence methods. The results illustrate that the RF plasma is the key factor for the improvement of crystal quality. Then the observation of A0X recombination associated with NO acceptor in low-temperature PL spectrum proved that some N atoms have occupied the positions of O atoms in ZnO films. Hall measurements shown that p-type ZnO film deposited on quartz glasses was obtained when RF power was 150 W for the Al-N codoped ZnO films, while the resistivity of N-doped ZnO films was rather high. Compared with the Al-doped ZnO film, the obviously increased resistivity of codoped films indicates that the formation of NO acceptors compensate some donors in ZnO films effectively.  相似文献   

5.
Transparent and efficient poly-ZnO ultraviolet Schottky diodes grown at different temperatures with indium-tin-oxide (ITO) as the metallic contact layer were fabricated with hydrogen peroxide (H2O2) applied as a surface treatment at 70 °C for 20 min. Analysis via field-emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS) demonstrated that the ZnO films underwent gradual oxidation and that H2O2 treatment resulted in an interfacial ZnO2 layer that covered the ZnO surface. IV measurements indicated that the ideality factor and the Schottky barrier height improved with increasing shunt resistance, and the trade-off between film quality and the degree of oxidation revealed that films grown at 400 °C exhibited the best diode characteristics.  相似文献   

6.
High quality transparent conductive ZnO thin films were deposited on quartz glass substrates using pulsed laser deposition (PLD). We varied the growth conditions such as the substrate temperature and oxygen pressure. X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), and atomic force microscopy (AFM) measurements were done on the samples. All films show n-type conduction, the best transparent conductive oxide (TCO) performance (Al-doped ZnO = 1.33 × 10−4 Ω cm, Ga-doped ZnO = 8.12 × 10−5 Ω cm) was obtained on the ZnO film prepared at pO2 = 5 mTorr and Ts = 300 °C.  相似文献   

7.
XPS and LEED have been used to characterize the interaction of sputter-deposited Pt (maximum coverage <5 ML) with Nb-doped SrTiO3(0 0 1) surfaces prepared either by annealing in O2 and then UHV, or by chemical-etching in aqua regia. The annealed surface exhibits an ordered (1 × 1) LEED pattern, with additional diffraction spots and streaks indicating the presence of oxygen vacancies. Increasing Pt coverage results in the decrease of the observed Pt(4f7/2) binding energy and the uniform shift of the Sr(3d), Ti(2p) and O(1s) levels to smaller binding energies, as expected for Pt cluster growth and surface-to-Pt charge donation on an n-type semiconductor. The etched surface is disordered, and exhibits a hydroxylated surface with a contaminant C film of ∼23 ? average thickness. Pt deposition on the etched surface results in an immediate decrease in the intensity of the OH feature in the O(1s) spectrum, and a uniform shift of the Sr(3d), Ti(2p) and O(1s) levels to larger binding energies with increasing Pt coverage. The observed Pt(4f7/2) binding energy on the etched surface (∼72 eV) is independent of Pt coverage, and indicates substantial electronic charge donation from the Pt to surface hydroxyl species. The observation of band bending towards higher binding energies upon Pt deposition (behavior normally associated with p-type semiconductors) demonstrates that sub-monolayer quantities of adsorbates can alter metal/oxide interfacial charge transfer and reverse the direction of band bending, with important consequences for Schottky barrier heights and device applications.  相似文献   

8.
P doped ZnO films were grown on quartz by radio frequency-magnetron sputtering method using a ZnO target mixed with 1.5 at% P2O5 in the atmosphere of Ar and O2 mixing gas. The as-grown P doped ZnO film showed n-type conductivity, which was converted to p-type after 800 °C annealing in Ar gas. The P doped ZnO has a resistivity of 20.5 Ω cm (p∼2.0×1017 cm−3) and a Hall mobility of 2.1 cm2 V−1 s−1. XRD measurement indicated that both the as-grown and the annealed P doped ZnO films had a preferred (0 0 2) orientation. XPS study agreed with the model that the PZn-2VZn acceptor complex was responsible for the p-type conductivity as found in the annealed P-doped ZnO. Temperature-dependent photoluminescence (PL) spectrum showed that the dominant band is located at 3.312 eV, which was attributed to the free electronic radiative transition to neutral acceptor level (FA) in ZnO. The PZn-2VZn acceptor complex level was estimated to be at EV=122 meV.  相似文献   

9.
Al-doped ZnO (AZO) transparent conductive thin films were grown by magnetron sputtering with AZO (98 wt.% ZnO, 2 wt.% Al2O3) ceramic target in Ar + H2 ambient at a relatively low temperature of 100 °C. To investigate the dependence of crystalline and properties of as-grown AZO films on the H2-flux, X-ray diffraction (XRD), X-ray photoemission spectrometer (XPS), Hall and transmittance spectra measurements were employed to analyze the AZO samples deposited with different H2-flux. The results indicate that H2-flux has a considerable influence on the transparent conductive properties of AZO films. The resistivity of 4.15 × 10−4 Ω cm and the average transmittance of more than 94% in the visible range were obtained with the optimal H2-flux of 1.0 sccm. Such a low temperature growing method present here may be especially useful for some low-melting point photoelectric devices and substrates.  相似文献   

10.
The fully-oxidized surface that forms on (1 1 1) oriented Ni3Al single crystals, with and without Pt addition, at 300-900 K under oxygen pressures of ca. 10−7 Torr was studied using XPS, AES, and LEIS. Two main types of surfaces form, depending upon oxidation temperature. At low-temperature, the predominant oxide is NiO, capped by a thin layer of aluminum oxide, which we refer to generically as AlxOy. At high-temperature (i.e., 700-800 K), NiO is replaced by a thick layer of AlxOy. By comparing samples that contain 0, 10 and 20 at.% Pt in the bulk, we find that the effect of Pt is to: (1) reduce the maximum amount of both NiO and AlxOy; and (2) shift the establishment of the thick AlxOy layer to lower temperatures. Platinum also decreases the adsorption probability of oxygen on the clean surface.  相似文献   

11.
Undoped and aluminum-doped zinc oxide (ZnO) thin films have been grown on polycrystalline α-alumina substrates by ultrasonic spray pyrolysis (USP) technique using zinc acetate dihydrate and aluminum chloride hexahydrate (Al source) dissolved in methanol, ethanol and deionized water. A number of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and photoluminescence (PL) were used to characterize the obtained ZnO thin films. It was seen that the orientation changed with increase in substrate temperature. During the ZnO deposition Zn source reacted with polycrystalline α-Al2O3 substrate to form an intermediate ZnAl2O4 spinel layer. It has been interestingly found that the intensity of green emission at 2.48 eV remarkably increased when the obtained ZnO:Al films were deposited at 380 °C. The FTIR absorbance intensity of spectroscopic band at 447±6 cm−1 is very sensitive to oxygen sublattice disorder resulting from non-stoichiometry, which is consistent with the result of PL characterization.  相似文献   

12.
In this study, we found that the double metal contact structure in Pt/Al/n-InP diodes provides better rectification characteristics than conventional single-metal/n-InP Schottky diodes. The effective barrier height was measured to be 0.67 eV for a 400 °C-annealed Pt/Al/n-InP diode sample. The increase in the barrier height is attributed to the formation of Al2O3 at the metal/n-InP contact interface during thermal annealing. The formation of the phase Al2O3 phase was monitored by X-ray diffraction (XRD) analysis. The corresponding element profiles of Al and O were also confirmed at the metal/n-InP contact interface using secondary ion mass spectrum (SIMS) analysis. The lowering of the Schottky barrier height due to the inhomogeneity at the metal/n-InP junction is also discussed on the basis of the TE theory. The distribution of local effective Schottky barrier heights was explained by a model incorporating the existence of double Gaussian barrier heights, which represent the high barrier and low barrier of the full distribution in the temperature ranges of 83-198 and 198-300 K.  相似文献   

13.
The physical, chemical, electrical and optical properties of as-deposited and annealed CdIn2O4 thin films deposited using spray pyrolysis technique at different nozzle-to-substrate distances are reported. These films are characterized by X-ray diffraction, XPS, SEM, PL, Hall effect measurement techniques and optical absorption studies. The average film thickness lies within 600-800 nm range. The X-ray diffraction study shows that films exhibit cubic structure with orientation along (3 1 1) plane. The XPS study reveals that CdIn2O4 films are oxygen deficient. Room temperature PL indicates the presence of green shift with oxygen vacancies. The typical films show very smooth morphology. The best films deposited with optimum nozzle-to-substrate distance (NSD) of 30 cm, has minimum resistivity of 1.3 × 10−3 Ω cm and 2.6 × 10−4 Ω−1 figure of merit. The band gap energy varies from 3.04 to 3.2 eV with change in NSD for annealed films. The effect of NSD as well as the annealing treatment resulted into the improvement of the structural, electrical and optical properties of the studied CdIn2O4 thin films.  相似文献   

14.
We utilized temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (ELS), and low energy electron diffraction (LEED) to investigate the oxidation of Pt(1 0 0)-hex-R0.7° at 450 K. Using an oxygen atom beam, we generated atomic oxygen coverages as high as 3.6 ML (monolayers) on Pt(1 0 0) in ultrahigh vacuum (UHV), almost 6 times the maximum coverage obtainable by dissociatively adsorbing O2. The results show that oxidation occurs through the development of several chemisorbed phases prior to oxide growth above about 1 ML. A weakly bound oxygen state that populates as the coverage increases from approximately 0.50 ML to 1 ML appears to serve as a necessary precursor to Pt oxide growth. We find that increasing the coverage above about 1 ML causes Pt oxide particle growth and significant surface disordering. Decomposition of the Pt oxide particles produces explosive O2 desorption characterized by a shift of the primary TPD feature to higher temperatures and a dramatic increase in the maximum desorption rate with increasing coverage. Based on thermodynamic considerations, we show that the thermal stability of the surface Pt oxide on Pt single crystal surfaces significantly exceeds that of bulk PtO2. Furthermore, we attribute the high stability and the acceleratory decomposition rates of the surface oxide to large kinetic barriers that must be overcome during oxide formation and decomposition. Lastly, we present evidence that structurally similar oxides develop on both Pt(1 1 1) and Pt(1 0 0), therefore concluding that the properties of the surface Pt oxide are largely insensitive to the initial structure of the Pt single crystal surface.  相似文献   

15.
We report the influence of Al concentration on electrical, structural, optical and morphological properties of Al-As codoped p-ZnO thin films using RF magnetron sputtering. Al-As codoped p-ZnO films with different Al concentrations were fabricated using As back diffusion from the GaAs substrate and sputtering Al2O3 mixed ZnO targets (1, 2 and 4 at%). The grown films were investigated by Hall effect measurement, X-ray diffraction (XRD), electron probe microanalysis (EPMA), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and atomic force microscopy (AFM) to study the electrical, structural, optical and morphological properties of the films. From the XRD, it was observed that both full-width at half-maximum (FWHM) and c-axis lattice constant have similar trends with respect to Al concentration. Hall measurements showed that the hole concentration increases as the Al concentration increases from 1015 to 1020 cm−3. The increase in hole concentration upon codoping was supported by the red shift in the near-band-edge (NBE) emission observed from room temperature PL spectra. The proposed p-type mechanism due to AsZn-2VZn complex was confirmed by low temperature PL and XPS analysis. The low FWHM, resistivity and peak-to-valley roughness observed by XRD, Hall measurement and AFM, respectively, suggest that 1 at% Al-doped ZnO:As film is the best codoped film.  相似文献   

16.
In this work we report the optical, morphological and structural characterization and diode application of Cr2O3 nanofilms grown on p-Si substrates by spin coating and annealing process. X-ray diffraction (XRD), non-contact mode atomic force microscopy (NC-AFM), ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy were used for characterization of nanofilms. For Cr2O3 nanofilms, the average particle size determined from XRD and NC-AFM measurements was approximately 70 nm. Structure analyses of nanofilms demonstrate that the single phase Cr2O3 on silicon substrate is of high a crystalline structure with a dominant in hexagonal (1 1 0) orientation. The morphologic analysis of the films indicates that the films formed from hexagonal nanoparticles are with low roughness and uniform. UV-vis absorption measurements indicate that the band gap of the Cr2O3 film is 3.08 eV. The PL measurement shows that the Cr2O3 nanofilm has a strong and narrow ultraviolet emission, which facilitates potential applications in future photoelectric nanodevices. Au/Cr2O3/p-Si metal/interlayer/semiconductor (MIS) diodes were fabricated for investigation of the electronic properties such as current-voltage and capacitance-voltage. Ideality factor and barrier height for Au//Cr2O3/p-Si diode were calculated as 2.15 eV and 0.74 eV, respectively. Also, interfacial state properties of the MIS diode were determined. The interface-state density of the MIS diode was found to vary from 2.90 × 1013 eV−1 cm−2 to 8.45 × 1012 eV−1 cm−2.  相似文献   

17.
ZnO:N thin films were deposited on sapphire substrate by metal organic chemical vapor deposition with NH3 as N-doping sources. The reproducible p-type ZnO:N film with hole concentration of ∼1017 cm−3 was successfully achieved by subsequent in situ thermal annealing in N2O plasma protective ambient, while only weak p-type ZnO:N film with remarkably lower hole concentration of ∼1015 cm−3 was obtained by annealing in O2 ambient. To understand the mechanism of the p-type doping behavior of ZnO:N film, X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption near-edge spectroscopy (XANES) measurements have been applied to investigate the local electronic structure and chemical states of nitrogen atoms in ZnO:N films.  相似文献   

18.
In this paper we report on the structural, electrical and optical characteristics of unintentionally doped ZnO films grown on a-plane sapphire substrates using the Filtered Cathodic Vacuum Arc (FCVA) technique. The resulting films showed considerable promise for device applications with properties including high transparency, moderate intrinsic carrier concentrations (1017–1019 cm−3), electron mobilities up to 30 cm2/Vs, low surface roughness (typically <2% of film thickness) and well-structured photoluminescence. Post-annealing in oxygen at temperatures up to 800 °C produced significant improvements in the properties of these films. Silver oxide Schottky diodes fabricated on FCVA ZnO showed ideality factors as low as 1.20 and good sensitivity to ultraviolet light.  相似文献   

19.
The electrical and optical characteristics of platinum (Pt) diffusion in n-type gallium nitride (GaN) film are investigated. The diffusion extent was characterized by the SIMS technique. The temperature-dependent diffusion coefficients of Pt in n-GaN are 4.158 × 10−14, 1.572 × 10−13 and 3.216 × 10−13 cm2/s at a temperature of 650, 750 and 850 °C, respectively. The Pt diffusion constant and activation energy in GaN are 6.627 × 10−9 cm2/s and 0.914 eV, respectively. These results indicate that the major diffusion mechanism of Pt in GaN is possibly an interstitial diffusion. In addition, it is also observed that the Pt atom may be a donor because the carrier concentration in Pt-diffused GaN is higher than that in un-diffused GaN. The optical property is studied by temperature-dependent photoluminescence (PL) measurement. The thermal quenching of the PL spectra for Pt-diffused GaN samples is also examined.  相似文献   

20.
One series of Cu-Zn and two series of Cu-Zn-Al hydroxycarbonate precursors with varying metal molar ratios were prepared via co-precipitation or multi-precipitation method, and the mixed metal oxides obtained by calcination of the precursor materials were used as adsorbents for H2S removal in the range of 25-100 °C. The results of H2S adsorption tests showed that these mixed oxides, especially two series of Cu-Zn-Al mixed metal oxides exhibited markedly high breakthrough sulfur capacities (ranging from 4.4 to 25.7 g S/100 g-sorbent with increase of Cu/Zn molar ratio) at 40 °C. Incorporation Cu and/or Al decreased the mean crystalline sizes of ZnO and CuO species in the Cu-Zn and Cu-Zn-Al mixed metal oxide adsorbents by decreasing of mean crystalline sizes of hydroxycarbanate phases mainly including hydrozincite, aurichalcite and malachite, segregation of Al phase, etc. Higher breakthrough sulfur capacity of each adsorbent in two ternary series than that of the corresponding adsorbent in binary series should be ascribed to the enhancement of the dispersion of ZnO and/or CuO species with incorporation of aluminum, thereby increasing the overall rate of reaction between the adsorbent and H2S by reducing the thickness of potential sulfide shell on the outer layer of the oxide crystalline grains and increasing the area of the interface for the exchange of HS/S2− and O2−. For each series of adsorbents, the breakthrough sulfur capacity increased with the increase of Cu/Zn molar ratio regardless of changes of the dispersion of CuO and/or ZnO. This phenomenon might be mainly attributed to faster rate of the lattice diffusion of HS, S2− and O2− or exchange of HS/S2− and O2− during the sulfidation of CuO than that during the sulfidation of ZnO due to less rearrangement of the anion lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号