首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper describes the microstructure and properties (microhardness and wear resistance) of the bronze laser alloyed with titanium. The laser alloying was done using a pulsed Nd:YAG laser with a generated beam energy of 25-35 J. A very fine microstructure was formed under such rapid solidification conditions like laser treatment. The high chemical homogeneity and fine structure of the melted zone were attributed to high cooling rates due to the short interaction time with Nd:YAG pulsed laser radiation and relatively small volume of the melted material. The structure obtained in the surface layer after laser alloying permits to get a high level of hardness and an improved wear resistance.  相似文献   

2.
Laser alloying of Ni–P electroless deposited layer with aluminum substrate was carried out by Nd–YAG pulsed laser. The phase composition and microstructure of the alloyed layers produced by different laser power densities were identified by X-ray diffractionary (XRD), scanning electron microscope (SEM) accompanied by energy dispersion X-ray analysis (EDS) and transmission electron microscope (TEM). Furthermore, the surface roughness of the alloyed layers was characterised by confocal laser scanning microscope (CLSM). The results showed that the characteristic dendritic or lamellar microstructures were observed in the alloyed layers. The phase constituents of the alloyed zones were intermetallic compounds of nickel–aluminum NiAl, Al3Ni and Al3Ni2, as well as some non-equilibrium phases and amorphous phases depending on the employed laser power density. As a result, the microhardness of the alloyed layer with Ni–P amorphous phases formed at laser power density 5.36×109 W/m2 reached to HV0.1 390.  相似文献   

3.
Composite coatings mainly containing titanium carbides and borides were produced by laser surface alloying of Ti-6Al-4V with graphite and boron mixed powders. The test results show that the coatings have higher hardness (1600-1700 HV0.1) and are more resistant to wear than the as-received sample. Laser scanning speed and the content of alloying elements (weight ratio of graphite to boron) have an effect on both the microstructure and the wear resistance of the coatings. TEM results show that strip titanium carbides and borides grow alternately and thus restrain the formation of coarse needle-like TiB and dendritic TiC crystals produced by laser alloying of titanium alloys with boron and graphite separately.  相似文献   

4.
The laser surface cladding of an AZ91D magnesium alloy with Al and Al2O3 powders was investigated using a pulsed Nd:YAG laser. The optimum ratio of Al to Al2O3 and the suitable range of laser processing parameters were identified. The resulting microstructure in the modified surface layer was examined and the wear resistance property was evaluated. The results show that the wear resistance of the laser treated samples was much superior to that of the untreated samples.  相似文献   

5.
On laser melt treatment,Sliding Wear of pearlitic ductile iron reduced from severe metallic wear to oxidative mild wear by nearly two orders of magnitude at 7.5 ms–1 over a load range of 14–31 kg cm–2; resistance toCavitation Erosion improved by a factor ofseven in corrosive media and surface hardness increased from 20–22 to 40–58 HRc. Laser melting could effectively reduceCorrosion rates in dilute acids by nearly 40%.These improvements were caused by the ultrafine microstructure (1–41 ,DAS), microhardness (700–900,HV 0,1) and the consequent high resistance to plastic flow and subsurface crack initiation.In this investigation, pin-on-disc adhesive wear, ultrasonic vibratory cavitation erosion and potentiodynamic corrosion in synthetic sea water and 0.01 N H2SO4, were assessed after laser surface melting or transformation hardening of hyper-eutectic ductile iron, typically employed in automotive and marine engine components by using CO2 CW or Nd-YAG pulsed high power laser. Also the processing parameters viz, beam power (P), scan rate (U), and specific energy intensity (P/UD b 2 ) for threshold and specific depth of transformation hardening or melting have been determined.  相似文献   

6.
采用5 kW CO2激光器在低碳钢表面熔覆Co基合金涂层及TiN/Co基合金复合涂层,研究了两种涂层的组织、显微硬度以及滑动磨损性能。结果表明,Co基合金涂层主要组成相为-γCo,-εCo,Cr23C6等,TiN/Co基合金复合涂层组成相为-γCo,-εCo,Cr23C6,TiN和TiC等。Co基合金涂层由发达的-γCo枝晶和其间共晶组织所组成,TiN/Co基合金涂层典型组织为等轴固溶体以及细小的共晶组织。TiN对熔覆层的组织有显著的改善作用,促使其组织细化,树枝晶向等轴晶转化,同时可显著提高Co基合金涂层的显微硬度及耐磨性能。  相似文献   

7.
As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF2 in the preparation of precursor NiCr-Cr3C2-CaF2 mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al4C3 carbides reinforcement as well as fine isolated spherical CaF2 solid lubrication particles uniformly dispersed in the NiCrAlTi (γ) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF2 and the increasing of it's wettability with the NiCrAlTi (γ) matrix during the laser cladding process.  相似文献   

8.
Y. Chen  H. M. Wang   《Applied Surface Science》2003,220(1-4):186-192
TiC reinforced composite coating on γ-TiAl alloy was successfully fabricated by laser surface alloying with carbon. The fine TiC reinforcing phase had a gradient distribution in the coating, and its growth morphology of TiC in laser surface alloyed coating was in unique faceted platelet-like. The composite coating exhibited high hardness and excellent high-temperature sliding wear resistance.  相似文献   

9.
Commercial titanium sheets pre-coated with 300-μm thick graphite layer were treated by employing a pulsed Nd:YAG laser in order to enhance surface properties such as wear and erosion resistance. Laser in-situ alloying method produced a composite layer by melting the titanium substrate and dissolution of graphite in the melt pool. Correlations between pulsed laser parameters, microstructure and microhardness of the synthesized composite coatings were investigated. Effects of pulse duration and overlapping factor on the microstructure and hardness of the alloyed layer were deduced from Vickers micro-indentation tests, XRD, SEM and metallographic analyses of cross sections of the generated layer. Results show that the composite cladding layer was constituted with TiC intermetallic phase between the titanium matrix in particle and dendrite forms. The dendritic morphology of composite layer was changed to cellular grain structure by increasing laser pulse duration and irradiated energy. High values of the measured hardness indicate that deposited titanium carbide increases in the conditions with more pulse duration and low process speed. This occurs due to more dissolution of carbon into liquid Ti by heat input increasing and positive influence of the Marangoni flow in the melted zone.  相似文献   

10.
A passively Q-switched 1.06 μm laser with Cr4+:YAG saturable absorber by direct 879 nm diode pumping grown-together composite GdVO4/Nd:GdVO4 crystal to the emitting level was demonstrated in this paper. The characteristics of pulsed laser were investigated by using two kinds of Cr4+:YAG crystal with the initial transmissivity of 80 and 90%, respectively. When the T 0 = 90% Cr4+:YAG was used, an average output power of 1.59 W was achieved at an incident pump power of 10 W. The pulse width and repetition rate were 64.5 ns and 170 kHz, respectively. The thermal lens effect of laser crystal was analyzed.  相似文献   

11.
Ni–Co duplex coating has been successfully cladded on copper substrate by continuous wave CO2 laser. The average microhardness of cladded coating was 635 HV0.05, which was about 7 times of Cu substrate (92 HV0.05). During sliding wear tests, the volume loss of copper substrate was about 7 times of Ni–Co duplex coating at 60 min. The high microhardness and crack free advantages of Ni–Co duplex coating, were favorable to reduce the plastic deformation and adhesive wear of copper substrate, resulting in the improvement of wear properties.  相似文献   

12.
We report a high repetition rate Q-switched Nd:YVO4/Cr4+:YAG micro laser with small pump power. Unwanted defects in pulse train, which are inherently large in passively Q-switched laser, was simply minimized by controlling temperature of Nd:YVO4/Cr4+:YAG medium. When T 0 = 90% Cr4+:YAG and R OC = 90% output coupler were used, Q-switched Nd:YVO4/Cr4+:YAG micro laser showed the optimum output; maximum output power of 58 mW, optical-to-optical efficiency of 9.1%, repetition rate of 1.1 MHz, and pulse width of 57 ns were achieved with 640 mW pumping. MHz-order repetition rate in Nd:YVO4/Cr4+:YAG Q-switched laser with low pumping (<1 W) is the highest value to the best of our knowledge.  相似文献   

13.
Laser surface alloying (LSA) with silicon was conducted on austenitic stainless steel 304. Silicon slurry composed of silicon particle of 5 μm in average diameter was made and a uniform layer was supplied on the substrate stainless steel. The surface was melted with beam-oscillated carbon dioxide laser and then LSA layers of 0.4–1.2 mm in thickness were obtained. When an impinged energy density was adjusted to be equal to or lower than 100 W mm−2, LSA layers retained rapidly solidified microstructure with dispersed cracks. In these samples, Fe3Si was detected and the concentration of Si in LSA layer was estimated to be 10.5 wt.% maximum. When the energy density was equal to or greater than 147 W mm−2, cellular grained structure with no crack was formed. No iron silicate was observed and alpha iron content in LSA layers increased. Si concentration within LSA layers was estimated to be 5 to 9 wt.% on average. Crack-free as-deposited samples exhibited no distinct corrosion resistance. The segregation of Si was confirmed along the grain boundaries and inside the grains. The microstructure of these samples changed with solution-annealing and the corrosion resistance was fairly improved with the time period of solution-annealing. Received: 2 September 1999 / Accepted: 6 September 1999 / Published online: 1 March 2000  相似文献   

14.
We demonstrate an intracavity-triggered passively Q-switched Nd:YVO4 laser within a diode-end-pumped configuration. We employ a Cr4+:YAG saturable absorber as the passive Q switch and an Nd:LiYF4 (YLF) laser as the laser triggering of the Q-switched laser. Since we use the same Cr4+:YAG crystal and output coupler with the Nd:YVO4 laser, the Cr4+:YAG Q switch is triggered inside the Nd:YLF laser cavity. As a result, the timing jitter in standard deviation of Nd:YVO4 laser can be reduced to 16 ns.  相似文献   

15.
Output performances of passively Q-switched, composite Nd:YAG/Cr4+:YAG lasers that consisted of bonded, all-poly-crystalline ceramics Nd:YAG and Cr4+:YAG are reported. Laser pulses at 1.06 μm with 2.5-mJ energy and 1.9-MW peak power are obtained from a 1.1-at % Nd:YAG/Cr4+:YAG ceramics that was quasi-continuous-wave (quasi-CW) pumped with a diode laser. Single-pass frequency doubling with LiB3O5 (LBO) nonlinear crystal at room temperature yielded green laser pulses at 532 nm of 0.36-mJ energy and 0.3-MW peak power, with a conversion efficiency of 0.27.  相似文献   

16.
Two different kinds of chalcogenide glass IR fibers were evaluated relative to transmission of pulsed IR radiation produced by several laser sources in the wavelength range from 1 to 10 μm. Fibers composed either from As-Se-Te or from As2S3 glass, of 250, 500, 750 and 1000 μm and 250, 750 and 1000 μm core diameters were studied, respectively. Attenuation measurements were obtained as a function of the laser energy input and as a function of curvature, wherever this was possible. The output beam quality was also studied using a beam profiler. The lasers used were a Q-switched Nd:YAG laser, emitting at 1.06 μm, a free-running or Q-switched Er:YAG laser emitting at 2.94 μm and a tunable pulsed CO2 laser emitting in the range of 9.3-10.6 μm. The fibers exhibited better behavior when tested with the Er:YAG laser and they were found fragile in pulsed radiation from the Nd:YAG and the CO2 laser. The output beam profiles generally showed a central multi-spiking energy distribution.  相似文献   

17.
Passive mode-locking of a pulsed Nd:YAG laser using a Cr4+:YAG saturable absorber was realized for the first time in a nearly critical stable resonator containing an antiresonant ring structure. The output energy and pulse duration are 13.5 mJ and 180 ps, respectively. The recovery time and saturable intensity for excited-state absorption of Cr4+:YAG under the action of strong laser pulses were calculated from rate equations.  相似文献   

18.
We describe a comparative study of the emission characteristics of debris from CO2 and Nd:YAG laser-produced tin plasmas for developing an extreme-ultraviolet (EUV) lithography light source. Tin (Sn) ions and droplets emitted from a Sn plasma produced by a CO2 laser or an Nd:YAG laser were detected using Faraday cups and quartz crystal microbalance (QCM) detectors, respectively. The droplets were also monitored by using silicon substrates as witness plates. The results showed higher ion kinetic energy and lower particle emission for the CO2 laser than the Nd:YAG laser for the same laser energy (50 mJ). The average ion energy was 2.2 keV for the CO2 laser-produced plasma (LPP), and 0.6 keV for the Nd:YAG LPP. The debris accumulation of the CO2 LPP detected by the QCM detectors, however, was less than one fourth of that of the Nd:YAG LPP for the same laser energy. Using ion energy data, the mirror lifetime is estimated for the CO2 and Nd:YAG lasers. In both cases, the upper limit of the number of shots was of the order of 106. PACS  52.38.DX; 52.38.Ph; 52.38.Mf  相似文献   

19.
This paper presents a pulsed Nd: YAG laser-robot system for spot and seam welding of mild steel sheets. The study evaluates the laser beams behaviour for welding, and then investigates pulsed Nd: YAG laser spot and seam welding processes. High pulse power intensity is needed to initiate the key-hole welding process and a threshold pulse energy to reach full penetration. In seam welding, a weld consists of successive overlapping spots. Both high pulse energy and high average power are needed to keep the key-hole welding going. A 70% overlap is used to define overlapping spot welding as seam welding and to optimize process parameters because a high tensile strength joint compatible with the strength of the base material can be obtained when the overlap is ≥70%; at the same time a smooth seam with full penetration is obtained. In these cases, the joints in pulsed Nd: YAG laser welding are comparable in strength to those obtained with CO2 laser welding. Robot positioning and motion accuracies can meet the demands of Nd: YAG laser sheet metal welding, but its cornering accuracy affects the welding processes. The purpose of the study is to evaluate the YAG laser-robot system for production in the automotive industry.  相似文献   

20.
In order to improve the high-temperature wear resistance of austenitic stainless steel, a wear resistant composite coating reinforced with hard (Cr,Fe)7C3 carbide and toughened by ductile γ-(Ni,Fe)/(Cr,Fe)7C3 eutectic matrix was fabricated by a novel central hollow laser cladding technique. The constituent phases and microstructure as well as high-temperature tribological behaviors of the Ni-based coating were investigated, respectively, and the corresponding wear mechanisms were discussed. It has been found that the composite coating exhibits superior wear resistance than substrate either at ambient or high temperatures. The coating shows better sliding wear resistance at 600 °C than 300 °C owing to high-temperature stability of the reinforced carbide and polishing effect as well as formation of continuous lubricious films, which implied it has large potential industrial applications at relatively higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号