首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
In this study, a Nd:YAG laser with wavelength of 1064 nm is used to scribe the indium tin oxide (ITO) thin films coated on three types of substrate materials, i.e. soda-lime glass, polycarbonate (PC), and cyclic-olefin-copolymer (COC) materials with thickness of 20 nm, 30 nm, and 20 nm, respectively. The effect of exposure time adjusted from 10 μs to 100 μs on the ablated mark width, depth, and electrical properties of the scribed film was investigated. The maximum laser power of 2.2 W was used to scribe these thin films. In addition, the surface morphology, surface reaction, surface roughness, optical properties, and electrical conductivity properties were measured by a scanning electron microscope, a three-dimensional confocal laser scanning microscope, an atomic force microscope, and a four-point probe. The measured results of surface morphology show that the residual ITO layer was produced on the scribed path with the laser exposure time at 10 μs and 20 μs. The better edge qualities of the scribed lines can be obtained when the exposure time extends from 30 μs to 60 μs. When the laser exposure time is longer than 60 μs, the partially burned areas of the scribed thin films on PC and COC substrates are observed. Moreover, the isolated line width and resistivity values increase when the laser exposure time increases.  相似文献   

2.
Da Wu  Yue Wang 《Applied Surface Science》2010,256(9):2934-2938
The coupling agent γ-mercapto propyl trimethoxy silane (WD-80) was used to enhance the adhesiveness of the indium tin oxide (ITO) thin film, which was prepared on a glass substrate using the sol-gel method. The nano-scratching test, XRD, TEM, SEM, and UV-vis spectrophotometer were employed to examine film adhesion, crystal structure, surface morphology, and transmittance. The results indicated that silane coupling agent, used in low concentration, did not change the film structure but increased the critical load of the film by 49%, from 4.16 mN to 6.20 mN, when the film was peeled off from the substrate. The principle by which the coupling agent works is discussed. In addition to increasing with the light wavelength, the average transmittance of the film in the visible range varied from 78.9% to 83.6%. Moreover, as a function of the WD-80 silane coupling agent, the film exhibited a high smoothness and density due to the orderly arrangement of particles.  相似文献   

3.
Zinc oxide films were prepared by rf magnetron sputtering on glass substrates with designed ZnO target using high-purity of zinc oxide (99.99%) powder. Systematic study on dependence of target-to-substrate distance (Dts) on structural, electrical and optical properties of the as-grown ZnO films was mainly investigated in this work. XRD showed that highly preferred ZnO crystal in the [0 0 1] direction was grown in parallel to the substrate, while the Dts did not effect to the peak position of XRD. With decreasing Dts, the growth rate is increased while the electrical resistivity as well as crystal size in the ZnO films was decreased. The XPS data showed that the O/Zn ratio in ZnO films was increased with increasing Dts in the films. The as-grown ZnO films have an average transmittance of above 85% at the visible region. The optical band gap of the as-grown ZnO films was changed from 3.18 to 3.36 eV with Dts. With decreasing Dts, the electrical resistivity was decreased, while the growth rate was increased.A bilayer is used as an anode electrode for organic electroluminescent devices. The bilayer consists of an ultrathin ZnO layer adjacent to a hole-transporting layer and an Indium tin oxide (ITO) outerlayer. We tried to bring low the barrier between the devices as deposited ZnO films on ITO substrates. We fabricated the organic EL structure consisted of Al as a cathode, Al2O3 as an electro transport layer, Alq3 as a luminously layer, TPD as a hole transport layer and ZnO (1 nm)/ITO (150 nm) as an anode. The result of this experiment was not good compared with the case of using ITO, nevertheless, at this structure we obtained the lowest turn-on voltage as the value of 19 V and the good brightness (6200 cd/m2) of the emission light from the devices. Then the quantum efficiency was to be 1.0%.  相似文献   

4.
Gold nanoparticles (GNPs) thin films, electrochemically deposited from hydrogen tetrachloroaurate onto transparent indium tin oxide (ITO) thin film coated glass, have different color prepared by variation of the deposition condition. The color of GNP film can vary from pale red to blue due to different particle size and their interaction. The characteristic of GNPs modified ITO electrodes was studied by UV-vis spectroscopy, scanning electron microscope (SEM) images and cyclic voltammetry. WO3 thin films were fabricated by sol-gel method onto the surface of GNPs modified electrode to form the WO3/GNPs composite films. The electrochromic properties of WO3/GNPs composite modified ITO electrode were investigated by UV-vis spectroscopy and cyclic voltammetry. It was found that the electrochromic performance of WO3/GNPs composite films was improved in comparison with a single component system of WO3.  相似文献   

5.
Effects of deposition process parameters on the deposition rate and the electrical properties of In2O3–10 wt% ZnO (IZO) thin films were modeled and analyzed by using the error back-propagation neural networks (BPNN). Output models were represented by response surface plots and the fitness of models was estimated by calculating the root mean square error (RMSE). The deposition rate of IZO thin films is affected by the RF power and the substrate temperature. The electrical properties of the IZO thin films are mainly controlled by O2 ratio and the substrate temperature. The predicted output characteristics by BPNN can sufficiently explain the mechanism of IZO deposition process. Thus, neural network models can provide the reliable explanation of IZO film deposition.  相似文献   

6.
Present paper reports the synthesis, electrical and optical properties of p-type conducting and transparent silver indium oxide (AIO) thin films prepared on glass substrates by reactive electron beam evaporation technique at three substrate temperatures (50, 200 and 250 °C) and at five evaporation rates (0.05 to 16.0 nm/s). The source material is pure powders of Ag2O:In2O3=50:50 mol%. The AIO films are amorphous. The films, though not corresponding to Delafossite crystal structure, exhibit p-type conductivity, when prepared at an evaporation rate of 0.05 nm/s at all the three substrate temperatures. With increasing filament current, it is observed that (i) the electrical resistivity decreases and (ii) the refractive index of the films (at 632.8 nm, and is in the range: 1.219-1.211) decreases. The work function (effective Fermi level) has been measured on these samples by Kelvin Probe method. The results are explained on the basis of partial ionic charge and localization of covalent bonds in the AIO thin films.  相似文献   

7.
Room temperature ferromagnetism in both transition-metals doped and undoped semiconductor thin films and nanostructures challenges our understanding of the magnetism in solids. In this report, we performed the magnetic measurement and Andreev reflection spectroscopy study on undoped Indium-Tin oxide (ITO) thin films and bulk samples. The magnetic measurement results of thin films show that the total magnetization/cm2 is thickness independent. Prominent ferromagnetism signal was also discovered in bulk samples. Spin polarized electron transports were probed on ITO thin film/superconductor interface and bulk samples surface/superconductor interface. Based on the magnetic measurement results and spin polarization measurement data, we propose that the ferromagnetism in this material originates from the surface spin polarization and this surface polarization may also explain the room temperature ferromagnetism discovered in other undoped oxide semiconductor thin films and nanostructures.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号