首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-doped TiO2 nanotube arrays (NTN) were prepared by anodization and dip-calcination method. Hydrazine hydrate was used as nitrogen source. The surface morphology of samples was characterized by SEM. It showed that the mean size of inner diameter was 65 nm and wall thickness was 15 nm for NTN. The ordered TiO2 nanotube arrays on Ti substrate can sustain the impact of doping process and post-heat treatment. The atomic ratio of N/Ti was 8/25, which was calculated by EDX. Photoelectrochemical property of NTN was examined by anodic photocurrent response. Results indicated the photocurrent of NTN was nearly twice as that of non-doped TiO2 nanotube arrays (TN). Photocatalytic activity of NTN was investigated by degrading dye X-3B under visible light. As a result, 99% of X-3B was decomposed by NTN in 105 min, while that of TN was 59%.  相似文献   

2.
To improve the photocatalytic application performances of TiO2, in this work, firstly CdS modified Degussa P25 TiO2 (CdS/TiO2) composites were prepared by two methods, sol-gel method and precipitation method. Next they, sol-gel-CdS/TiO2 (sg-CdS/TiO2) and precipitation-CdS/TiO2 (pp-CdS/TiO2), were loaded on activated carbon fibers (ACFs) by dip-coating method using the sodium carboxymethyl cellulose as adhesives. The composites were characterized by XRD, UV-vis absorbance spectra, SEM, EDS and BET. The photocatalytic activities under sunlight were investigated by the degradation of methylene blue. The results showed that CdS/TiO2 composites were mainly composed of anatase-TiO2 and little CdS cubic phases. The absorption wavelengths of sg-CdS/TiO2 and pp-CdS/TiO2 composites were extended to 590 nm and 740 nm, respectively. The absorption edge had a pronounced ‘red shift’. From EDS analysis, the elemental contents of CdS/TiO2 were mainly Ti and O and a small quantity of S and Cd. CdS/TiO2 loaded on ACFs were in the form of small clusters, but not very uniform; compared with the original ACFs, the surface area and pore volume of CdS/TiO2/ACFs decreased slightly, respectively, while the average pore diameter was not changed. The photodegradation rate of methylene blue under sunlight with CdS/TiO2/ACFs composites was markedly higher than that of P25-TiO2/ACFs, and the effect of pp-CdS/TiO2/ACFs composites was better than that of sg-CdS/TiO2/ACFs, when irradiated for 180 min, and the photodegradation rate of methylene blue reached to 90.1%. The photodegradation kinetics of the methylene blue fitted with the Langmuir-Hinshelwood equation. The apparent reaction rate constants of sg-CdS/TiO2/ACFs and pp-CdS/TiO2 were 0.0105 min−1 and 0.0146 min−1, respectively, which were about 1.3-1.7 times as large as that of P25-TiO2/ACFs.  相似文献   

3.
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO2), TA (bottom layer was pure TiO2, surface layer was Ag modified), TT (pure TiO2 thin film) and AA (TiO2 thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (Iph). LSV confirmed the existence of Ag0 state in the TiO2 thin film. SEM and XRD experiments indicated that the sizes of the TiO2 nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.  相似文献   

4.
Iodine-doped TiO2 nanocrystallites (denoted as I-TNCs) were prepared via a newly developed triblock copolymer-mediated sol-gel method at a temperature of 393 K. I-doping, crystallization and the formation of porous structure have been simultaneously achieved. The obtained particles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-vis spectrophotometer. The results indicated that the as-prepared I-TNCs possessed a diameter of ca. 5 nm with anatase crystalline structure and a specific surface area of over 200 m2 g−1. The presence of iodine expanded the photoresponse in visible light range, and led to enrich in surface hydroxyl group on the TiO2 surface. Compared with the commercial photocatalyst P25, the I-TNCs significantly enhanced the photocatalytic efficiency in the degradation of rhodamine B and 2,4-dichlorophenol, and the I-TNCs with 2.5 mol% doping ratio exhibited the best photocatalytic activity.  相似文献   

5.
Fluorinated TiO2 hollow microspheres with three-dimensional hierarchical architecture were prepared by solvothermally treatment using solid microspheres as precursor. The obtained solid and hollow TiO2 microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectra. The photocatalytic activity of as-prepared solid and hollow TiO2 microspheres was determined by degradation of methyl orange (MO) under visible light irradiation. The results showed that the surface fluorination, the existence of accessible mesopores channels, and the increased light harvesting abilities could remarkably improve the photocatalytic activity of TiO2 hollow microspheres.  相似文献   

6.
The Cu-TiO2 nanoparticles with different Cu dopant content were prepared by sol-gel method. The structure of the as-prepared catalysts and the surface species of Cu-TiO2 were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectroscopy (DRS). The relationship between the photocatalytic activity and the surface species of Cu-TiO2 was revealed via the measurement of surface photovoltage spectroscopy (SPS) as well as the degradation of the rhodamine B (RhB). The experimental results suggest that the Cu-TiO2 photocatalysts with appropriate content of Cu (about 0.06 mol%) possess abundant electronic trap, which effectively inhibits the recombination of photoinduced charge carriers, improving the photocatalytic activity of TiO2. While at high Cu dopant region (>0.06 mol%), the excessive oxygen vacancies and Cu species can become the recombination centers of photoinduced electrons and holes. Meanwhile, at heavy Cu doping concentration, excessive P-type Cu2O can cover the surface of TiO2, which leads to decrease in the photocatalytic activity of photocatalyst. The photocatalytic experimental results are in good agreement with the conclusions of SPS measurements, indicating that there is a close relationship between the photocatalytic activity and the intensity of SPS spectra.  相似文献   

7.
TiO2 nanoparticles capped with sodium dodecylbenzenesulfonate (DBS) are synthesized by a sol-hydrothermal process using tetrabutyl titanate and DBS as raw materials. The effects of surface-capping DBS on the surface photovoltage spectroscopy (SPS), photoluminescence (PL) and photocatalytic performance of TiO2 nanoparticles are principally investigated together with their relationships. The results show that the surface of TiO2 nanoparticles can be well capped by DBS groups while the pH value and added DBS amount are controlled at 5.0 and 2% of TiO2 mass weight, respectively, and the linkage between DBS groups and TiO2 surfaces is mainly by means of quasi-sulphonate bond. The intensities of SPS and PL spectra of TiO2 obviously decrease after DBS-capping, while the activity can greatly increase during the photocatalytic degradation of Rhodamine B (RhB) solution, which are mainly attributed to the electron-withdrawing character of the DBS groups. Moreover, the enhancement of photocatalytic activity of DBS-capped TiO2 is also related to the increase in the capability for adsorbing RhB.  相似文献   

8.
Branched rutile TiO2 nanorod arrays were directly synthesized on the F-doped tin oxide (FTO) substrate through a two-step hydrothermal treatment by a seeding method with TiO2-nanorods as seeds. The samples were characterized respectively by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and field-emission scanning electron microscopy (FESEM). Results showed that TiO2 nanorods with nanobranches (TiO2-NB) grew vertically on the FTO substrate. XRD and HRTEM results confirmed that the TiO2-NB arrays were single-crystalline rutile. The optical properties of the samples were studied with a UV-vis spectrometer. The photocatalytic activity of the TiO2-NB film is better than that of P25 particulate film. Direct electrical pathway and improved light-harvesting efficiency were crucial for the superior photocatalytic activity of the TiO2-NB arrays.  相似文献   

9.
Fe3+-doped TiO2 film deposited on fly ash cenosphere (Fe-TiO2/FAC) was successfully synthesized by the sol-gel method. These fresh photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analyses (TGA). The XRD results showed that Fe element can maintain metastable anatase phase of TiO2, and effect of temperature showed rutile phase appears in 650 °C for 0.01% Fe-TiO2/FAC. The SEM analysis revealed the Fe-TiO2 films on the surface of a fly ash cenosphere with a thickness of 2 μm. The absorption threshold of Fe-TiO2/FACs shifted to a longer wavelength compared to the photocatalyst without Fe3+-doping in the UV-vis absorption spectra. The photocatalytic activity and kinetics of Fe-TiO2/FAC with varying the iron content and the calcination temperatures were investigated by measuring the photodegradation of methyl blue (MB) during visible light irradiation. Compared with TiO2/FAC and Fe3+-doped TiO2 powder (Fe-TiO2), the degradation ratio using Fe-TiO2/FAC increased by 33% and 30%, respectively, and the best calcined temperature was 450 °C and the optimum doping of Fe/Ti molar ratio was 0.01%. The Fe-TiO2/FAC particles can float in water due to the low density of FAC in favor of phase separation to recover these photocatalyst after the reaction, and the recovery test shows that calcination contributes to regaining photocatalytic activity of Fe-TiO2/FAC photocatalyst.  相似文献   

10.
TiO2 was treated by water in an ultrasonic bath, resulting in the enhancement of the photocatalytic activity for the decomposition of methylene blue under UV and visible light irradiation. No change in the crystallinity and optical properties of TiO2 by the H2O-treatment was observed. The X-ray photoelectron spectroscopy (XPS) and FT-IR data revealed that the C impurities were oxidized by this treatment, indicating that the change in the structure of the C impurities plays a pivotal role in the photocatalytic activity of TiO2.  相似文献   

11.
CdS/TiO2 nanocomposites were prepared via a simple wet chemical method, and characterized through X-ray diffraction (XRD) and transmission electron microscopy (TEM). Their ability to degrade Acid Rhodamine B was investigated under visible light irradiation. The results indicate that CdS/TiO2 nanocomposite with a mass ratio of 4:1(TiO2:CdS) showed high photocatalytic activity and the CdS loaded on TiO2 nanotube surface exhibited a hexagonal phase. The dispersion of CdS on TiO2 nanotube surface had an important effect on the degradation efficiency of pollutant, which provides a strategy for practical industry application.  相似文献   

12.
Nano N-doped TiO2 nanotubes were fabricated by hydrothermally treating N-doped TiO2 nanorods in a 8 M NaOH solution at 110 °C for 20 h. The N-doped TiO2 nanorods were synthesized by a solvothermal process with precursor solution containing titanium sulfate, urea, and dichloroethane. The N-doped TiO2 nanorods and nanotubes were characterized with X-ray diffraction, transmission electron microscopy, and UV-vis spectrophotometry. The nitrogen contents of the N-doped TiO2 nanorods and nanotubes were reached to high values of 36.9 at.% and 25.7 at.%, respectively. The nitrogen doping narrowed the band gap of the N-doped TiO2 nanorods and nanotubes and introduced indirect band gap to the powders, which respectively extended the absorption edge to visible light and infrared region. The nanotubes showed larger specific surface area and greater degradation efficiency to methyl orange than the nanorods.  相似文献   

13.
利用自组装胶体晶体模板导向电沉积制备氧化锌反蛋白石,利用液相沉积法在室温下制备复合氧化锌/氧化钛反蛋白石. 当对氧化锌反蛋白石进行20 min的液相沉积处理时,可以获得具有非密堆积三维有序多孔结构的氧化锌/氧化钛复合反蛋白石. 当液相沉积时间达到60 min时,则得到壁厚明显增强的纯氧化钛反蛋白石(TIO-LPD60). 讨论了样品成分和拓扑形貌变化的机理. 紫外光催化性能的初步研究显示,反蛋白石膜的光催化性能同时受到来自成分和拓扑形貌两方面的显著影响. 对比纯的氧化锌或者氧化钛反蛋白石,尽管样品具有相似的反蛋白石壁厚,ZnO/TiO2复合反蛋白石被证实具有明显增强的光催化活性. 然而,当反蛋白石壁厚从约52 nm增加到约90 nm时,TIO-LPD60显示了最高的光催化活性.  相似文献   

14.
A novel copper and sulfur codoped TiO2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl2·2H2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced “red-shift” in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO2 catalyst has higher activity than undoped and Cu or S doped TiO2 catalysts.  相似文献   

15.
Bi2O3 surface-modified TiO2 nanoparticle has been synthesized by sol-hydrothermal processes, followed by post-treatment with an appropriate amount of bismuth nitrate solution, and also characterized by XRD, Raman, BET, TEM, FT-IR, XPS, UV-vis DRS and SPS techniques. The effects of the surface-modification with Bi2O3 on the thermal stability, photoinduced charge separation and photocatalytic activity for degrading rhodamine B (or phenol) under ultraviolet (or visible) irradiation are investigated in detail, along with their relationships and the activity enhancement mechanisms are also suggested. The results show that the modification with Bi2O3 can improve the thermal stability of the as-prepared anatase crystallites, consequently enhancing the anatase crystallinity so as to promote the photoinduced charge separation. And the modification with Bi2O3 also extends the optical response range. It can be concluded that the activity enhancement of surface-modified TiO2 is mainly attributed to the increase in the photoinduced charge separation rate and to the extent of the optical response range, compared with un-modified ones. Moreover, the inhibition phase transformation mechanism related to Bi2O3 is suggested.  相似文献   

16.
Highly ordered titanium oxide (TiO2) nanotubes were prepared by electrolytic anodization of titanium electrodes. Morphological evolution and phase transformations of TiO2 nanotubes on a Ti substrate and that of freestanding TiO2 membranes during the calcinations process were studied by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction microscopy. The detailed results and mechanisms on the morphology and crystalline structure were presented. Our results show that a compact layer exists between the tubular layer and Ti substrate at 600 °C, and the length of the nanotubes shortens dramatically at 750 °C. The freestanding membranes have many particles on their tubes during calcinations from 450 to 900 °C. The TiO2 nanotubes on the Ti substrate transform to rutile crystals at 600 °C, while the freestanding TiO2 membranes retain an anatase crystal with increasing temperature to 800 °C. The photocatalytic activity of TiO2 nanotubes on a Ti substrate annealed at different temperatures was investigated by the degradation of methyl orange in aqueous solution under UV light irradiation. Due to the anatase crystals in the tubular layer and rutile crystals in the compact layer, TiO2 nanotubes annealed at 450 °C with pure anatase crystals have a better photocatalytic activity than those annealed at 600 °C or 750 °C.  相似文献   

17.
A multilayer photocatalytic TiO2 coating on a high-density polyethylene (HDPE) disk was found to degrade aqueous methylene blue in a batch reactor study. The TiO2 coating was fabricated by a low-temperature method using polyurethane resin (PU) as a barrier layer for HDPE and as a binding agent for two TiO2 layers. Adequate adhesion between the HDPE substrate and PU barrier in aqueous environment was ensured with an oxygen plasma treatment.The photocatalytic effect of immersed TiO2 coating on the degradation of methylene blue in aqueous solution was monitored by UV–vis spectrometry as a function of UV-illumination time. Samples were allowed to adsorb methylene blue in the dark for 1 h before the UV-degradation experiments were started. The percentages of methylene blue degraded during 6 h UV illumination (λ = 365 nm) varied from 80% to 92%. The degradation followed pseudo-first order reaction kinetics, and the observed rate constants (kobs) were between 0.27 and 0.43 h−1.  相似文献   

18.
In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe3+-dopants in TiO2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO2) and N-doped TiO2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.  相似文献   

19.
In this paper, macropores TiO2 layer was fabricated on titanium substrates based on plasma based ion implantation (PBII). In order to increase the photodegradation efficiency of fabricated TiO2 layer, two approaches are used: (1) preparation of macropores on TiO2 layer to increase the total photodegradation area and (2) nitrogen doping (N-doping) to increase light absorption efficiency. The fabrication process of the N-doped macropores TiO2 layer comprises four steps: firstly, helium plasma based ion implantation (He-PBII) is employed to generate He bubbles in substrate; secondly, oxygen plasma based ion implantation (O-PBII) and a followed annealing in air are executed to obtain rutile and anatase mixture TiO2 phases; thirdly, He bubbles are exposed to the surface via an Ar ion sputter process; lastly, the samples are doped by nitrogen PBII (N-PBII). The photodegradation of Rhodamine B solution under Xe lamp indicates that the TiO2 layer with surface macropores and N-doping has higher light photocatalysis efficiency.  相似文献   

20.
TiO2 nanoparticles have been prepared by simple chemical precipitation method and annealed at different temperatures. The as-prepared TiO2 are amorphous, and they transform into anatase phase on annealing at 450 °C, and rutile phase on annealing at 900 °C. The X-ray diffraction results showed that TiO2 nanoparticles with grain size in the range of 21–24 nm for anatase phase and 69–74 nm for rutile phase have been obtained. FESEM images show the formation of TiO2 nanoparticles with small size in structure. The FTIR and Raman spectra exhibited peaks corresponding to the anatase and rutile structure phases of TiO2. Optical absorption studies reveal that the absorption edge shifts towards longer wavelength (red shift) with increase of annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号