首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Millimeter-long filaments and accompanying luminous plasma and defect channels created in fused silica (FS) by single focused femtosecond laser pulses with supercritical powers were probed in situ using optical imaging and contact ultrasonic techniques. Above the threshold pulse energy Eopt = 5 μJ corresponding to a few megawatt power levels pulses collapse due to self-focusing, producing channels filled by electron-hole plasma and luminescent defects, and exhibits predominantly compressive pressure transients. Analysis of the optical and ultrasonic response versus the laser pulse energy suggests that filamentary pulse propagation in the channels occurs with considerable dissipation of about ∼10 cm−1. The predominant ionization mechanism is most likely associated with avalanche ionization, while the main mechanism of optical absorption is free-carrier absorption via inverse Bremsstrahlung interaction with the polar lattice.  相似文献   

2.
Silicon carbonitride thin films have been deposited by plasma enhanced chemical vapor deposition (PECVD) from bis(dimethylamino)dimethylsilane (BDMADMS) as a function of X = (BDMADMS/(BDMADMS + NH3)) between 0.1 and 1, and plasma power P (W) between 100 and 400 W. The microstructure of obtained materials has been studied by SEM, FTIR, EDS, ellipsometrie, and contact angle of water measurements. The structure of the materials is strongly depended on plasma parameters; we can pass from a material rich in carbon to a material rich in nitrogen. Single gas permeation tests have been carried out and we have obtained a helium permeance of about 10−7 mol m−2 s−1 Pa−1 and ideal selectivity of helium over nitrogen of about 20.  相似文献   

3.
Poly(dimethylsiloxane) (PDMS) has been irradiated with a frequency quadrupled Nd:YAG laser and a KrF*-excimer laser at a repetition rate of 1 Hz. The analysis of ablation depth versus pulse number data reveals a pronounced incubation behavior. The thresholds of ablation (266 nm: 210 mJ cm−2, 248 nm: 940 mJ cm−2) and the corresponding effective absorption coefficients αeff (266 nm: 48900 cm−1, 248 nm: 32700 cm−1, αlin = 2 cm−1) were determined. The significant differences in the ablation thresholds for both irradiation wavelengths are probably due to the different pulse lengths of both lasers. Since the shorter pulse length yields a lower ablation threshold, the observed incubation can be due to a thermally induced and/or a multi-photon absorption processes of the material or impurities in the polymer.Incubation of polymers is normally related to changes of the chemical structure of the polymer. In the case of PDMS, incubation is associated with local chemical transformations up to several hundred micrometers below the polymer surface. It is possible to study these local chemical transformations by confocal Raman microscopy, because PDMS is transparent in the visible. The domains of transformation consist of carbon and silicon, as indicated by the appearance of the carbon D- and G-bands between 1310 and 1610 cm−1, a band appearing between 502 and 520 cm−1 can be assigned to mono- and/or polycrystalline silicon.The ablation products, which are detected in the surroundings of the ablation crater consist of carbon and amorphous SiOx (x ≈ 1.5) as detected by infrared spectroscopy.  相似文献   

4.
A method to generate a pulse sound source for acoustic tests based on nanosecond laser ablation with a plasma plume is discussed. Irradiating a solid surface with a laser beam expands a high-temperature plasma plume composed of free electrons, ionized atoms, etc. at a high velocity throughout ambient air. The shockwave generated by the plasma plume becomes the pulse sound source. A laser ablation sound source has two features. Because laser ablation is induced when the laser fluence reaches 1012–1014 W/m2, which is less than that for laser-induced breakdown (1015 W/m2), laser ablation can generate a lower sound pressure, and the sound source has a hemispherical radiation pattern on the surface where laser ablation is generated. Additionally, another feature is that laser-induced breakdown sound sources can fluctuate, whereas laser ablation sound sources do not because laser ablation is produced at a laser beam–irradiation point. We validate this laser ablation method for acoustic tests by comparing the measured and theoretical resonant frequencies of an impedance tube.  相似文献   

5.
We report on the development of a laser source in the mid-infrared spectral region based on difference-frequency generation (DFG) in a periodically poled LiNbO3 (PPLN) crystal. Continuously tunable coherent radiation from 2.75 to 4.78 μm was produced by optical parametric interaction between a diode-pumped monolithic continuous-wave (CW) Nd:YAG laser operating at 1.064 μm and a CW Ti:Sapphire laser tunable from 767 to 871 nm. Temperature-dependent quasi-phase-matched DFG wavelength acceptance bandwidth was studied and characterized. An empiric formula is given to estimate the phase-matched wavelength acceptance bandwidth as a function of the crystal temperature at Λ = 22.5 μm. A large frequency scan of 128 cm−1 (about 78 cm−1 above 1 μW) near 4.2 μm was achieved. The whole absorption spectrum of the P and R branches of the ν3 band of atmospheric carbon dioxide has been recorded with a single phase-matched frequency scan.  相似文献   

6.
This paper presents an analytical and numerical investigation of an intense circularly polarized wave propagating along the static magnetic field parallel to oscillating magnetic field in magnetoactive plasma. In the relativistic regime such a magnetic field is created by pulse itself. The authors have studied different regimes of propagation with relativistic electron mass effect for magnetized plasma. An appropriate expression for dielectric tensor in relativistic magnetoactive plasma has been evaluated under paraxial theory. Two modes of propagation as extraordinary and ordinary exist; because of the relativistic effect, ultra-strong magnetic fields are generated which significantly influence the propagation of laser beam in plasma. The nature of propagation is characterized through the critical-divider curves in the normalized beam width with power plane For given values of normalized density (ωp/ω) and magnetic field (ωc/ω) the regions are namely steady divergence (SD), oscillatory divergence (OD) and self-focusing (SF). Numerical computations are performed for typical parameters of relativistic laser-plasma interaction: magnetic field B = 10-100 MG; intensity I = 1016 to 1020 W/cm2; laser frequency ω = 1.1 × 1015 s−1; cyclotron frequency ωc = 1.7 × 1013 s−1; electron density ne = 2.18 × 1020 cm−3. From the calculations, we confirm that a circularly polarized wave can propagate in different regimes for both the modes, and explicitly indicating enhancement in wave propagation, beam focusing/self-guiding and penetration of E-mode in presence of magnetic field.  相似文献   

7.
Neodymium doped strontium gallogermanate crystals were grown successfully by the Bridgman technique. The linear thermal expansion coefficients for the c- and a-axes were measured as 5.8 × 10−6 °C−1 and 6.5 × 10−6 °C−1. Absorption spectra, and fluorescence spectra, as well as fluorescence decay curves of Nd3+-doped Sr3Ga2Ge4O14 crystal, have been recorded at room temperature and used to calculate the absorption and stimulated emission cross-sections. Based on the Judd-Ofelt theory, three intensity parameters were obtained. The luminescent quantum efficiency of the 4F3/2 level was determined to be approximately 73.8% for this material. Compared with other Nd3+-doped laser crystals, Nd3+-doped Sr3Ga2Ge4O14 crystal displays special laser properties due to its disorder structure.  相似文献   

8.
The a-C:H and a-C:NX:H films were deposited onto silicon wafers using radio frequency (rf) plasma enhanced chemical vapor deposition (PECVD) and pulsed-dc glow discharge plasma CVD, respectively. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize chemical nature and bond types of the films. The results demonstrated that the a-C:H film prepared by rf-CVD (rf C:H) has lower ID/IG ratio, indicating smaller sp2 cluster size in an amorphous carbon matrix. The nitrogen concentrations of 2.9 at.% and 7.9 at.% correspond to carbon nitride films prepared with rf and pulse power, respectively.Electrochemical corrosion performances of the carbon films were investigated by potentiodynamic polarization test. The electrolyte used in this work was a 0.89% NaCl solution. The corrosion test showed that the rf C:H film exhibited excellent anti-corrosion performance with a corrosion rate of 2 nA cm−2, while the carbon nitride films prepared by rf technique and pulse technique showed a corrosion rate of 6 nA cm−2 and 235 nA cm−2, respectively. It is reasonable to conclude that the smaller sp2 cluster size of rf C:H film restrained the electron transfer velocity and then avoids detriment from the exchange of electrons.  相似文献   

9.
Two types of lasers based on hydrogen-like impurity-related transitions in bulk silicon operate at frequencies between 1 and 7 THz (wavelength range of 50-230 μm). These lasers operate under mid-infrared optical pumping of n-doped silicon crystals at low temperatures (<30 K). Dipole-allowed optical transitions between particular excited states of group-V substitutional donors are utilized in the first type of terahertz silicon lasers. These lasers have a gain ∼1-3 cm−1 above the laser thresholds (>1 kW cm−2) and provide 10 ps-1 μs pulses with a few mW output power on discrete lines. Raman-type Stokes stimulated emission in the range 4.6-5.8 THz has been observed from silicon crystals doped by antimony and phosphorus donors when optically excited by radiation from a tunable infrared free electron laser. The scattering occurs on the 1s(E)→1s(A1) donor electronic transition accompanied by an emission of the intervalley transverse acoustic g-phonon. The Stokes lasing has a peak power of a few tenths of a mW and a pulse width of a few ns. The Raman optical gain is about 7.4 cm GW−1 and the optical threshold intensity is ∼100 kW cm−2.  相似文献   

10.
The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO2 has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO2 spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm−1 (A1g), 197 cm−1 (Eg), 398 cm−1 (B1g), 515 cm−1 (A1g), and 640 cm−1 (Eg) assigned to anatase which were replaced by bands at 143 cm−1 (B1g), 235 cm−1 (2 phonon process), 448 cm−1 (Eg) and 612 cm−1 (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO2 changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO2 and allow characterisation of the effect of laser irradiation upon TiO2. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process.  相似文献   

11.
We investigate laser pulse influence on aluminum target in irradiance range 109 to 1016 W/cm2, pulse duration between 10−8 and 10−15 s, Gaussian time profile with wavelength of 0.8 μm. For all computations energy density was 10 J/cm2. Plasma in the evaporated material is generated at the energy density above 10 J/cm2as the modeling showed.Long and short laser pulses distinguish by the mechanisms of energy transformation. For short laser pulses there is volumetric energy absorption, together with rapid phase transitions it lead to overheating in solid and liquid states, overheated solid temperature rises up to (6-8)Tm. Under influence of the energy saved in overheated solid, duration of the phase transitions becomes nanosecond, which is several orders of magnitude longer than laser pulse.  相似文献   

12.
An organo-metallic complex, [(CH3)4N][Ni(dmit)2] (dmit2− = (1,3-dithiole-2-thione-4,5-dithiolate), abbreviated as MeNi, is synthesized. The nonlinear optical absorption properties of MeNi dissolved in acetone have been studied using the open-aperture Z-scan technique with 40 ps pulse width at 1064 nm and 1 ns, 15 ns pulse width at 1053 nm, respectively. Strong saturable absorption has been found when the sample solution is irradiated by 40 ps and 1 ns laser pulses. While irradiated with 15 ns laser pulse, a stronger reverse saturable absorption has been found. The nonlinear optical absorption coefficients are −1.03 × 10−11 m/W, −1.85 × 10−11 m/W and 3.84 × 10−10 m/W, respectively. The mechanism responsible for the difference between the results is analyzed. All the results suggest that this material may be a promising candidate for the application to laser pulse compression in the near-infrared waveband.  相似文献   

13.
The spatial and temporal behavior of the tantalum plasma produced in air by third harmonic Nd:YAG laser (0.6 GW cm−2) has been studied using optical emission spectroscopy. Excitation temperature and electron density have been estimated from the analysis of spectral data as well as their spatio-temporal evolutions. As the delay time increases from 400 to 2000 ns, the excitation temperature has found to decrease from 10,000 K to 7900 K. The value of Ne decreases continuously from 4 × 1018 near the zero position to 5 × 1017 in a linear approach along with the propagation axe of the plasma plume. Laser-supported consumption wave regime has been proposed to explain the propagation of the plasma.  相似文献   

14.
Very weak water vapor absorption lines have been investigated by intracavity laser absorption spectroscopy (ICLAS) in the 11 335-11 947 and 12 336-12 843 cm−1 spectral regions dominated by the ν1 + 3ν2 + ν3 and ν2 + 3ν3 bands, respectively. A detectivity on the order of αmin ∼ 10−9 cm−1 was achieved with an ICLAS spectrometer based on a Ti: Sapphire laser. It allowed detecting transitions with an intensity down to 5 × 10−28 cm/molecule which is about 10 times lower than the weakest line intensities previously detected in the considered region. A line list corresponding to 1281 transitions with intensity lower than 5 × 10−26 cm/molecule has been generated. A detailed comparison with the line lists provided by the HITRAN database and by recent investigations by Fourier transform spectroscopy associated with very long multi pass cell is presented. The rovibrational assignment performed on the basis of the ab initio calculations of Schwenke and Partridge, has allowed for determining 176 new energy levels belonging to a total of 16 vibrational states.  相似文献   

15.
16.
Laser fluence, repetition rate and pulse duration effects on paint ablation   总被引:1,自引:0,他引:1  
The efficiency (mm3/(J pulse)) of laser ablation of paint was investigated with nanosecond pulsed Nd:YAG lasers (λ = 532 nm) as a function of the following laser beam parameters: pulse repetition rate (1-10,000 Hz), laser fluence (0.1-5 J/cm2) and pulse duration (5 ns and 100 ns). In our study, the best ablation efficiency (η ≅ 0.3 mm3/J) was obtained with the highest repetition rate (10 kHz) at the fluence F = 1.5 J/cm2. This ablation efficiency can be associated with heat accumulation at high repetition rate, which leads to the ablation threshold decrease. Despite the low thermal diffusivity and the low optical absorption of the paint (thermal confinement regime), the ablation threshold fluence was found to depend on the pulse duration. At high laser fluence, the ablation efficiency was lower for 5 ns pulse duration than for the one of 100 ns. This difference in efficiency is probably due to a high absorption of the laser beam by the ejected matter or the plasma at high laser intensity. Accumulation of particles at high repetition rate laser ablation and surface shielding was studied by high speed imaging.  相似文献   

17.
This paper reports the growth and spectroscopic characterization of Er3+:Sr3Y(BO3)3 crystal. Er3+:Sr3Y(BO3)3 crystal with dimensions up to ∅20×35 mm3 has been grown by Czochralski method. The polarized spectroscopic properties of Er3+:Sr3Y(BO3)3 crystal were investigated. Based on the Judd-Ofelt theory, the effective intensity parameters Ωt were obtained: Ω2=1.71×10−20 cm2, Ω4=1.39×10−20 cm2, Ω6=0.74×10−20 cm2 for π-polarization, and Ω2=1.77×10−20 cm2, Ω4=1.44×10−20 cm2, Ω6=0.65×10−20 cm2 for σ-polarization. The emission cross-section σem was calculated to be 4.75×10−21 cm2 for π-polarization at 1536 nm and 6.30×10−21 cm2 for σ-polarization at 1537 nm. The investigated results showed that Er3+:Sr3Y(BO3)3 crystal may be regarded as a potential laser host material for 1.55 μm IR solid-state lasers.  相似文献   

18.
High-resolution Fourier transform spectrum of phosphine (PH3) at room temperature has been recorded in the region of the 3ν2 band (2730-3100 cm−1) at an apodized resolution of 0.005 cm−1. About 200 vibration-rotation transitions have been least squares fitted with an rms of 0.00039 cm−1 after taking into account the ΔK = ±3 interaction.  相似文献   

19.
Highly conducting films of p-type CuCrO2 are attractive as hole-injectors in oxide-based light emitters. In this paper, we report on the development of dry etch patterning of CuCrO2 thin films. The only plasma chemistry that provided some chemical enhancement was Cl2/Ar under inductively coupled plasma conditions. Etch rates of ∼500 Å min−1 were obtained at chuck voltages around −300 V and moderate source powers. In all cases, the etched surface morphologies were improved relative to un-etched control samples due to the smoothing effect of the physical component of the etching. The threshold ion energy for the onset of etching was determined to be 34 eV. Very low concentrations (≤1 at.%) of residual chlorine were detected on the etched surfaces but could be removed by simple water rinsing.  相似文献   

20.
Pulsed laser deposition of ZnO in high pressure gas offers a route for the catalyst-free preparation of ZnO nanorods less than 10 nm in diameter. This paper describes the results of some experiments to investigate the laser plume dynamics in the high gas pressure (5 × 103-104 Pa) regime used for PLD of ZnO nanorods. In this regime the ablation plume is strongly coupled to the gas and the plume expansion is brought to a halt within about 1 cm from the target. A 248 nm excimer laser was used to ablate a ceramic ZnO target in various pressures of argon. Time- and space-resolved UV/vis emission spectroscopy and Langmuir probe measurements were used to diagnose the plasma and follow the plume dynamics. By measuring the spatial profiles of Zn I and Zn II spectral lines it was possible to follow the propagation of the external and internal shock waves associated with the interaction of the ablation plume with the gas. The Langmuir probe measurements showed that the electron density was 109-1010 cm−3 and the electron temperature was several eV. At these conditions the ionization equilibrium is described by the collisional-radiative model. The plume dynamics was also studied for ZnO targets doped with elements which are lighter (Mg), comparable to (Ga), and heavier (Er) than Zn, to see if there is any elemental segregation in the plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号