首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical as well as the structural properties of La2O3 thin films on TiN substrates were investigated. Amorphous stoichiometric La2O3 thin films were grown at 300 °C via atomic layer deposition technique by using lanthanum 2,2,6,6-tetramethyl-3,5-heptanedione [La(TMHD)3] and H2O as precursors. Post-annealing of the grown film induced dramatic changes in structural and the electrical properties. Crystalline phases of the La2O3 film emerged with the increase of the post-annealing temperature. Metal-insulator-metal (MIM) capacitor was fabricated to measure the electrical properties of the grown film. The dielectric constant of the La2O3 thin films increased with annealing temperature to reach the value of 17.3 at 500 °C. The leakage current density of the film post-annealed at 400 °C was estimated to be 2.78 × 10−10 and 2.1 × 10−8 A/cm2 at ±1 V, respectively.  相似文献   

2.
The influence of substrate temperature on structural and dielectric properties of cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 (BZN) thin films prepared by pulsed laser deposition process has been investigated. BZN thin films were deposited on Pt/Ti/SiO2/Si(1 0 0) substrate and in situ annealed at 700 °C. The results indicate that the substrate temperature has a significant effect on the structural and dielectric properties of BZN thin films. The films exhibit a cubic pyrochlore structure in the substrate temperature range from 550 °C to 700 °C and at the annealing temperature of 700 °C. With further increase of substrate temperature to 750 °C, the phases of Bi2O3, BiNbO4 and Bi5Nb3O15 can be detected in the XRD pattern due to the Zn loss. The dielectric constant and loss tangent of the films deposited at 650 °C are 192 and 6 × 10−4 at 10 kHz, respectively. The tunability is 10% at a dc bias field of 0.9 MV/cm.  相似文献   

3.
The Bi2O3-ZnO-Nb2O5 (BZN) cubic pyrochlore thin films were prepared on Pt/TiO2/SiO2/Si(1 0 0) substrates by using pulsed laser deposition process. The oxygen pressure was varied in the range of 5-50 Pa to investigate its effect on the structure and dielectric properties of BZN thin films. It is found that oxygen pressure during deposition plays an important role on structure and other properties of BZN films. The BZN films deposited at temperature of 650 °C and at O2 pressure of 5 Pa have an amorphous BZN and Nb2O5 phases but exhibits a cubic pyrochlore structure with a preferential (2 2 2) orientation when the oxygen pressure increases to 10 Pa. Dielectric constant and loss tangent of the films deposited at 10 Pa are 185 and 0.0008 at 10 kHz, respectively. The dielectric tunability is about 10% at a dc bias field of 0.9 MV/cm.  相似文献   

4.
Sandwich-structure Al2O3/HfO2/Al2O3 gate dielectric films were grown on ultra-thin silicon-on-insulator (SOI) substrates by vacuum electron beam evaporation (EB-PVD) method. AFM and TEM observations showed that the films remained amorphous even after post-annealing treatment at 950 °C with smooth surface and clean silicon interface. EDX- and XPS-analysis results revealed no silicate or silicide at the silicon interface. The equivalent oxide thickness was 3 nm and the dielectric constant was around 7.2, as determined by electrical measurements. A fixed charge density of 3 × 1010 cm−2 and a leakage current of 5 × 10−7A/cm2 at 2 V gate bias were achieved for Au/gate stack /Si/SiO2/Si/Au MIS capacitors. Post-annealing treatment was found to effectively reduce trap density, but increase in annealing temperature did not made any significant difference in the electrical performance.  相似文献   

5.
The sintering behavior, microstructures, and microwave dielectric properties of Ca2Zn4Ti15O36 ceramics with B2O3 addition were investigated. The crystalline phases and microstructures of Ca2Zn4Ti15O36 ceramics with 0-10 wt% B2O3 addition were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The sintering temperature of Ca2Zn4Ti15O36 ceramic was lowered from 1170 to 930 °C by 10 wt% B2O3 addition. Ca2Zn4Ti15O36 ceramics with 8 wt% B2O3 addition sintered at 990 °C for 2 h exhibited good microwave dielectric properties, i.e., a quality factor (Qf) 11,400 GHz, a relative dielectric constant (εr) 41.5, and a temperature coefficient of resonant frequency (τf) 94.4 ppm/°C.  相似文献   

6.
The dielectric properties of MgO-Ta2O5 continuous composition spread (CCS) thin films were investigated. The MgO-Ta2O5 CCS thin films were deposited on Pt/Ti/SiO2/Si substrates by off-Axis RF magnetron sputtering system, and then the films were annealed at 350 °C with rapid thermal annealing system in vacuum. The dielectric constant and loss of MgO-Ta2O5 CCS thin films were plotted via 1500 micron-step measuring. The specific point of Ta2O5-MgO CCS thin film (post annealed at 350 °C) showing superior dielectric properties of high dielectric constant (k ∼ 28) and low dielectric loss (tan δ < 0⋅004) at 1 MHz were found in the area of 3-5 mm apart from Ta2O5 side on the substrate. The cation's composition of thin film was Mg:Ta = 0.4:2 at%.  相似文献   

7.
Bi1.5Zn1.0Nb1.5O7/Ba0.6Sr0.4TiO3/Bi1.5Zn1.0Nb1.5O7 tunable multilayer thin film has been fabricated by pulsed laser ablation and characterized. Phase composition and microstructure of multilayer films were characterized by X-ray diffraction, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The film has very smooth surface with RMS roughness of 1.5-2 nm and grain size of 100-150 nm. Total film thickness has been measure to be 375 nm. The BZN thin films at 300 K, on Pt(1 1 1)/SiO2/Si substrate showed zero-field dielectric constant of 105 and dielectric loss tangent of 0.002 at frequency of 0.1 MHz. Thin films annealed at 700 °C shows the dielectric tunability of 18% with biasing field 500 kV/cm at 0.1 MHz. The multilayer thin film shows nonferroelectric behavior at room temperature. The good physical and electrical properties of multilayer thin films make them promising candidate for tunable microwave device applications.  相似文献   

8.
Lead-free ferroelectric K0.5Na0.5NbO3 (KNN) thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition process. The structures, crystal orientations and electrical properties of thin films have been investigated as a function of deposition temperature from 680 °C to 760 °C. It is found that the deposition temperature plays an important role in the structures, crystal orientations and electrical properties of thin films. The crystallization of thin films improves with increasing deposition temperature. The thin film deposited at 760 °C exhibits strong (0 0 1) preferential orientation, large dielectric constant of 930 and the remnant polarization of 8.54 μC/cm2.  相似文献   

9.
BaZr0.1Ti0.9O3 and BaZr0.2Ti0.8O3 (BZT) thin films were deposited on Pt/Ti/LaAlO3 (1 0 0) substrates by radio-frequency magnetron sputtering, respectively. The films were further annealed at 800 °C for 30 min in oxygen. X-ray diffraction θ-2θ and Φ-scans showed that BaZr0.1Ti0.9O3 films displayed a highly (h 0 0) preferred orientation and a good cube-on-cube epitaxial growth on the LaAlO3 (1 0 0) substrate, while there are no obvious preferential orientation in BaZr0.2Ti0.8O3 thin films. The BaZr0.1Ti0.9O3 films possess larger grain size, higher dielectric constant, larger tunability, larger remanent polarization and coercive electric field than that of BaZr0.2Ti0.8O3 films. Whereas, BaZr0.1Ti0.9O3 films have larger dielectric losses and leakage current density. The results suggest that Zr4+ ion can decrease dielectric constant and restrain non-linearity. Moreover, the enhancement in dielectric properties of BaZr0.1Ti0.9O3 films may be attributed to (1 0 0) preferred orientation.  相似文献   

10.
Sm2S3 thin films were prepared on Si (1 0 0) substrates using SmCl3 and Na2S2O3 as precursors by liquid phase deposition method on self-assembled monolayers. The influence of the molar concentration ratio of [S2O32−]/[Sm3+] on the phase compositions, surface morphologies and optical properties of the as-deposited films were investigated. The as-deposited Sm2S3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet-visible (UV-vis) and photoluminescence spectrum (PL). Results show that it is important to control the [S2O32−]/[Sm3+] during the deposition process and monophase Sm2S3 thin films with orientation growth along (0 1 1) direction can be achieved when [S2O32−]/[Sm3+] = 2.0, pH 3.0, with citric acid as a template agent. The as-deposited thin films exhibit a dense and crystalline surface morphology. Good transmittance in the visible spectrum and excellent absorbency of ultraviolet light of the thin films are observed, and the band gap of the thin films first decrease and then increase with the increase of the [S2O32−]/[Sm3+]. The as-deposited thin films also exhibit red photoluminescence properties under visible light excitation. With the increase of the [S2O32−]/[Sm3+] in the deposition solution, the PL properties of Sm2S3 thin films are obviously improved.  相似文献   

11.
Highly textured bismuth oxide (Bi2O3) thin films have been prepared using anodic oxidation of electrodeposited bismuth films onto stainless steel substrates. The Bi2O3 films were uniform and adherent to substrate. The Bi2O3 films were characterized for their structural and electrical properties by means of X-ray diffraction (XRD), electrical resistivity and dielectric measurement techniques. The X-ray diffraction pattern showed that Bi2O3 films are highly textured along (1 1 1) plane. The room temperature electrical resistivity of the Bi2O3 films was 105 Ω cm. Dielectric measurement revealed normal oxide behavior with frequency.  相似文献   

12.
The effects of vanadium(V) doping into SrBi4Ti4O15 (SBTi) thin films on the structure, ferroelectric, leakage current, dielectric, and fatigue properties have been studied. X-ray diffraction result showed that the crystal structure of the SBTi thin films with and without vanadium is the same. Enhanced ferroelectricity was observed in the V-doped SrBi4Ti4O15 (SrBi4−x/3Ti4−xVxO15, SBTiV-x (x = 0.03, 0.06, and 0.09)) thin films compared to the pure SrBi4Ti4O15 thin film. The values of remnant polarization (2Pr) and coercive field (2Ec) of the SBTiV-0.09 thin film capacitor were 40.9 μC/cm2 and 105.6 kV/cm at an applied electric field of 187.5 kV/cm, respectively. The 2Pr value is over five times larger than that of the pure SBTi thin film capacitor. At 100 kHz, the values of dielectric constant and dielectric loss were 449 and 0.04, and 214 and 0.06 for the SBTiV-0.09 and the pure SBTi thin film capacitors, respectively. The leakage current density of the SBTiV-0.09 thin film capacitor measured at 100 kV/cm was 6.8 × 10−9 A/cm2, which is more than two and a half orders of magnitude lower than that of the pure SBTi thin film capacitor. Furthermore, the SBTiV-0.09 thin film exhibited good fatigue endurance up to 1010 switching cycles. The improved electrical properties may be related to the reduction of internal defects such as bismuth and oxygen vacancies with changes in the grain size by doping of vanadium into SBTi.  相似文献   

13.
L. Shi 《Applied Surface Science》2007,253(7):3731-3735
As a potential gate dielectric material, the La2O3 doped SiO2 (LSO, the mole ratio is about 1:5) films were fabricated on n-Si (0 0 1) substrates by using pulsed laser deposition technique. By virtue of several measurements, the microstructure and electrical properties of the LSO films were characterized. The LSO films keep the amorphous state up to a high annealing temperature of 800 °C. From HRTEM and XPS results, these La atoms of the LSO films do not react with silicon substrate to form any La-compound at interfacial layer. However, these O atoms of the LSO films diffuse from the film toward the silicon substrate so as to form a SiO2 interfacial layer. The thickness of SiO2 layer is only about two atomic layers. A possible explanation for interfacial reaction has been proposed. The scanning electron microscope image shows the surface of the amorphous LSO film very flat. The LSO film shows a dielectric constant of 12.8 at 1 MHz. For the LSO film with thickness of 3 nm, a small equivalent oxide thickness of 1.2 nm is obtained. The leakage current density of the LSO film is 1.54 × 10−4 A/cm2 at a gate bias voltage of 1 V.  相似文献   

14.
The (Pb0.90La0.10)Ti0.975O3/PbTiO3 (PLT/PT), PbTiO3/(Pb0.90La0.10)Ti0.975O3/PbTiO3 (PT/PLT/PT) multilayered thin films with a PbOx buffer layer were in situ deposited by RF magnetron sputtering at the substrate temperature of 600 °C. With this method, highly (1 0 0)-oriented PLT/PT and PT/PLT/PT multilayered thin films were obtained. The PbOx buffer layer leads to the (1 0 0) orientation of the films. The dielectric, ferroelectric and pyroelectric properties of the PLT multilayered thin films were investigated. It is found that highly (1 0 0)-oriented PT/PLT/PT multilayered thin films possess higher remnant polarization 2Pr (44.1 μC/cm2) and better pyroelectric coefficient at room temperature p (p = 2.425 × 10−8 C/cm2 K) than these of PLT and PLT/PT thin films. These results indicate that the design of the PT/PLT/PT multilayered thin films with a PbOx buffer layer should be an effective way to enhance the dielectric, ferroelectric and pyroelectric properties. The mechanism of the enhanced ferroelectric properties was also discussed.  相似文献   

15.
Effects of lanthanum (La) substitution (0.003 ≤ x ≤ 0.015) on the dielectric and ferroelectric properties of Pb(Zr0.5Ti0.5)O3 thin films have been investigated. The films were synthesized on the Pt (1 1 1)/Ti/SiO2/Si (1 0 0) substrates by a sol-gel method. Large dielectric constants of the films are obtained within range of 800-1600 which are almost comparable to those observed in bulk ceramics. The films also show improved remnant polarization values and reduced coercive field values with the increasing addition of La substitution. Our results suggest that low La substitution contributes to enhance film electric properties due to the improvement of non-180° domain wall mobility as well as the stabilization of tetragonal phase.  相似文献   

16.
This paper describes the structural properties and electrical characteristics of thin Dy2O3 dielectrics deposited on silicon substrates by means of reactive sputtering. The structural and morphological features of these films after postdeposition annealing were studied by X-ray diffraction and X-ray photoelectron spectroscopy. It is found that Dy2O3 dielectrics annealed at 700 °C exhibit a thinner capacitance equivalent thickness and better electrical properties, including the interface trap density and the hysteresis in the capacitance-voltage curves. Under constant current stress, the Weibull slope of the charge-to-breakdown of the 700 °C-annealed films is about 1.6. These results are attributed to the formation of well-crystallized Dy2O3 structure and the reduction of the interfacial SiO2 layer.  相似文献   

17.
The impact of the ZrO2/La2O3 film thickness ratio and the post deposition annealing in the temperature range between 400 °C and 600 °C on the electrical properties of ultrathin ZrO2/La2O3 high-k dielectrics grown by atomic layer deposition on (1 0 0) germanium is investigated. As-deposited stacks have a relative dielectric constant of 24 which is increased to a value of 35 after annealing at 500 °C due to the stabilization of tetragonal/cubic ZrO2 phases. This effect depends on the absolute thickness of ZrO2 within the dielectric stack and is limited due to possible interfacial reactions at the oxide/Ge interface. We show that adequate processing leads to very high-k dielectrics with EOT values below 1 nm, leakage current densities in the range of 0.01 A/cm2, and interface trap densities in the range of 2-5 × 1012 eV−1 cm−2.  相似文献   

18.
The CaCu3Ti4O12/SiO2/CaCu3Ti4O12 (CCTO/SiO2/CCTO) multilayered films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition method. It has been demonstrated that the dielectric loss and the leakage current density were significantly reduced with the increase of the SiO2 layer thickness, accompanied with a decrease of the dielectric constant. The CCTO film with a 20 nm SiO2 layer showed a dielectric loss of 0.065 at 100 kHz and the leakage current density of 6×10−7 A/cm2 at 100 kV/cm, which were much lower than those of the single layer CCTO films. The improvement of the electric properties is ascribed to two reasons: one is the improved crystallinity; the other is the reduced free carriers in the multilayered films.  相似文献   

19.
Sm28Fe72 and Sm32Fe68 films of 100 nm thickness were grown using DC magnetron sputter deposition and their structure, magnetization, electrical and Hall resistance characteristics were investigated. An increase in electrical resistivity from 4.75×10−6 to 5.62×10−6 Ω m and from 2.26×10−6 to 2.84×10−6 Ω m for Sm28Fe72 and Sm32Fe68 films, respectively, with decrease in temperature from 300 to 40 K is attributed to the strain induced anisotropy that dominates at lower temperatures. The positive extraordinary Hall coefficients (RS) are observed for both films at 300 and 80 K. The existence of hysteresis indicates that Sm28Fe72 and Sm32Fe68 films possess perpendicular anisotropy at 300 K. Hysteresis loop becomes narrow at 80 K for both Sm28Fe72 and Sm32Fe68 films. Magnetization measurements at 300 K exhibiting small coercive field values of 31 and 49 Oe for Sm28Fe72 and Sm32Fe68 films, respectively, confirm the existence of perpendicular anisotropy at 300 K.  相似文献   

20.
Pb(Zr0.53Ti0.47)O3 (PZT) thin films with different thicknesses (99-420 nm) were prepared on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by sol-gel method and films were annealed at 450 °C for 30 min using a single-mode cavity of 2.45 GHz microwaves. X-ray diffraction analysis indicated that the pyrochlore phase was transformed to the perovskite phase at above 166 nm films. The grain sizes were increased, surface roughnesses were decreased, and electrical properties were improved with film thickness. The leakage current density was 9 × 10−8 A/cm2 at an applied electrical field of 100 kV/cm. The ohmic and field-enhanced Schottky emission mechanisms were used to explain leakage current behavior of the PZT thin films. These results suggest that microwave annealing is effective for obtaining low temperature crystallization of thin films with better properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号