首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions of Indium (In) and silicon (Si) atoms are known to catalyze certain organic chemical reactions with high efficiency. In an attempt of creating a material that manifests the interactions, In implanted SiO2 thin films were prepared by ion beam injection and their catalytic abilities for organic chemical reactions were examined. It has been found that, with an injection energy of approximately 0.5 keV, a thin In film is formed on a SiO2 substrate surface and the In implanted SiO2 thin film can catalyze an organic chemical reaction. It has been also shown that there is an optimal ion dose for the highest catalytic ability in the film preparation process. Thin-film-type catalyzing materials such as the one proposed here may open a new way to enhance surface chemical reaction rates.  相似文献   

2.
Laser-induced damage is associated with nodular defects in HfO2/SiO2 multilayer films. In order to investigate the damage characteristics of HfO2/SiO2 multilayer mirrors and find the information of improving laser-induced damage threshold, nodular defects are characterized by multiple analytical techniques; the damage morphologies induced by nodular-ejections are presented; the depths of nodular-ejection pits are investigated; the laser-induced damage threshold of zero probability and the stabilities of nodular-ejection pits exposed to repetitive illuminations are studied. Results show that domes in the film surface are nodular defects. Reliable depth information of nodular-ejection pits is obtained by counting layers from the damage edge. The depth statistical result implies nodular defects in these samples are usually originated from deep seeds. Some process optimizations suggestions are given based on the depth information. A simple tractable method is proposed to determine the functional damage threshold of these HfO2/SiO2 multilayer films basing on the damage experiments.  相似文献   

3.
When heated by high-energy electron beam (EB), SiC can decompose into C and Si vapor. Subsequently, Si vapor reacts with metal oxide thin film on substrate surface and formats dense SiO2 thin film at high substrate temperature. By means of the two reactions, SiC/SiO2 composite thin film was prepared on the pre-oxidized 316 stainless steel (SS) substrate by electron beam-physical vapor deposition (EB-PVD) only using β-SiC target at 1000 °C. The thin film was examined by energy dispersive spectroscopy (EDS), grazing incidence X-ray asymmetry diffraction (GIAXD), scanning electron microscopy (SEM), atomic force microscopy (AFM), backscattered electron image (BSE), electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infra-red (FT-IR) spectroscopy. The analysis results show that the thin film is mainly composed of imperfect nano-crystalline phases of 3C-SiC and SiO2, especially, SiO2 phase is nearly amorphous. Moreover, the smooth and dense thin film surface consists of nano-sized particles, and the interface between SiC/SiO2 composite thin film and SS substrate is perfect. At last, the emissivity of SS substrate is improved by the SiC/SiO2 composite thin film.  相似文献   

4.
The deposition of Na on thin film V2O5 has been study by using photoelectron spectroscopy. Vanadium ions are strongly reduced due to the deposition of Na. Three kinds of Na species were observed on the surface: the first is assigned to intercalated Na; the second is contributed to Na2O2; the third is appointed to metallic Na. The formation of Na2O2 leads to arise an emission line at about 10.3 eV in the valence band spectra. The metallic Na will further react with the oxides substrate and form Na2O2 on the surface in UHV chamber.  相似文献   

5.
A series of Ta2O5 films with different SiO2 additional layers including overcoat, undercoat and interlayer was prepared by electron beam evaporation under the same deposition process. Absorption of samples was measured using the surface thermal lensing (STL) technique. The electric field distributions of the samples were theoretical predicted using thin film design software (TFCalc). The laser induced damage threshold (LIDT) was assessed using an Nd:YAG laser operating at 1064 nm with a pulse length of 12 ns. It was found that SiO2 additional layers resulted in a slight increase of the absorption, whereas they exerted little influence on the microdefects. The electric field distribution among the samples was unchanged by adding an SiO2 overcoat and undercoat, yet was changed by adding an interlayer. SiO2 undercoat. The interlayer improved the LIDT greatly, whereas the SiO2 overcoat had little effect on the LIDT.  相似文献   

6.
王长顺  潘煦  Urisu Tsuneo 《物理学报》2006,55(11):6163-6167
利用热氧化法在硅晶片上生长SiO2薄膜,结合光刻和磁控溅射技术在SiO2薄膜表面制备接触型钴掩模,通过掩模方法在硅表面开展了同步辐射光激励的表面刻蚀研究,在室温下制备了SiO2薄膜的刻蚀图样.实验结果表明:在同步辐射光照射下,通入SF6气体可以有效地对SiO2薄膜进行各向异性刻蚀,并在一定的气压范围内,刻蚀率随SF6气体浓度的增加而增加,随样品温度的下降而升高;如果在同步辐射光照射下,用SF6和O2的混合气体作为反应气体,刻蚀过程将停止在SiO2/Si界面,即不对硅刻蚀,实现了同步辐射对硅和二氧化硅两种材料的选择性刻蚀;另外,钴表现出强的抗刻蚀能力,是一种理想的同步辐射光掩模材料. 关键词: 同步辐射刻蚀 接触型钴掩模 二氧化硅薄膜  相似文献   

7.
In this study, SnO2/TiO2 thin films are fabricated on SiO2/Si and Corning glass 1737 substrates using a R.F. magnetron sputtering process. The gas sensing properties of these films under an oxygen atmosphere with and without UV irradiation are carefully examined. The surface structure, morphology, optical transmission characteristics, and chemical compositions of the films are analyzed by atomic force microscopy, scanning electron microscopy and PL spectrometry. It is found that the oxygen sensitivity of the films deposited on Corning glass 1737 substrates is significantly lower than that of the films grown on SiO2/Si substrates. Therefore, the results suggest that SiO2/Si is an appropriate substrate material for oxygen gas sensors fabricated using thin SnO2/TiO2 films.  相似文献   

8.
Spherical SiO2 particles have been coated with Zn2SiO4:Eu3+ phosphor layers by a Pechini sol-gel process. The microstructure and luminescent properties of the obtained Zn2SiO4:Eu3+@SiO2 particles were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, and lifetime. The results demonstrate that the Zn2SiO4:Eu3+@SiO2 particles, which have regular and uniform spherical morphology, emitted an intensive red light emission at 613 nm under excitation at 395 nm. Besides, the effects of the Eu3+ concentration, annealing temperature and charge compensators of Li+ ions on the PL emission intensities were investigated in detail.  相似文献   

9.
E. Coetsee 《Applied Surface Science》2010,256(22):6641-10155
X-ray photoelectron spectroscopy (XPS) results were obtained for standard Y2SiO5:Ce phosphor powders as well as undegraded and 144 h electron degraded Y2SiO5:Ce pulsed laser deposited (PLD) thin films. The two Ce 3d peaks positioned at 877.9 ± 0.3 and 882.0 ± 0.2 eV are correlated with the two different sites occupied by Ce in the Y2SiO5 matrix. Ce replaced the Y in the two different sites with coordination numbers of 9 and 7. The two Ce 3d XPS peaks obtained during the thin film analysis were also correlated with the luminescent mechanism of the broad band emission spectra of the Y2SiO5:Ce X1 phase. These two different sites are responsible for the two main sets of cathodoluminescent (CL) and photoluminescence (PL) peaks situated at wavelengths of 418 and 496 nm. A 144 h electron degradation study on the Y2SiO5:Ce thin film yielded an increase in the CL intensity with a second broad emission peak emerging between 600 and 700 nm. XPS analysis showed the presence of SiO2 on the surface that formed during prolonged electron bombardment. The electron stimulated surface chemical reaction (ESSCR) model is used to explain the formation of this luminescent SiO2 layer.  相似文献   

10.
Qian Sun 《Applied Surface Science》2008,254(13):3774-3779
The lithium electrochemistry of SiO2 thin film prepared by reactive radio frequency sputtering has been investigated for the first time. The reversible discharge capacities of SiO2/Li cells cycled between 0.01 and 3.0 V are found in the range from 416 to 510 mAh/g during the first 100 cycles. By using ex situ transmission electron microscopy, selected-area electron diffraction and X-ray photo-electron spectroscopy measurements, both Li-Si alloying process and the reversible conversion reaction of SiO2 into Li2Si2O5 are proposed in the lithium electrochemical reaction of SiO2. SiO2 film electrode with high-reversible capacity and good cycle performance exhibits it potential anode material for future lithium-ion batteries.  相似文献   

11.
This paper investigated the gaseous formaldehyde degradation by the amine-functionalized SiO2/TiO2 photocatalytic films for improving indoor air quality. The films were synthesized via the co-condensation reaction of methyltrimethoxysilane (MTMOS) and 3-aminopropyltrimethoxysilane (APTMS). The physicochemical properties of prepared photocatalysts were characterized with N2 adsorption/desorption isotherms measurement, X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FT/IR). The effect of amine-functional groups and the ratio of MTMOS/APTMS precursors on the formaldehyde adsorption and photocatalytic degradation were investigated. The results showed that the formaldehyde adsorption and photocatalytic degradation of the APTMS-functionalized SiO2/TiO2 film was higher than that of SiO2/TiO2 film due to the surface adsorption on amine sites and the relatively high of the specific surface area of the APTMS-functionalized SiO2/TiO2 film (15 times higher than SiO2/TiO2). The enhancement of the formaldehyde degradation of the film can be attributed to the synergetic effect of adsorption and subsequent photocatalytic decomposition. The repeatability of photocatalytic film was also tested and the degradation efficiency was 91.0% of initial efficiency after seven cycles.  相似文献   

12.
Y.J. Guo  X.T. Zu  B.Y. Wang  X.D. Jiang  X.D. Yuan  H.B. Lv  S.Z. Xu 《Optik》2009,120(18):1012-1015
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2.  相似文献   

13.
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. By optimizing the preparation conditions, monodisperse CoFe2O4/SiO2 NPs with high amino groups’ density were obtained, which is necessary for enzyme immobilization. TEM confirm that the sample is a core/shell structure. These aminated-CoFe2O4/SiO2 NPs have narrow size distributions with a mean size of about 60 nm. Moreover, the aminated-CoFe2O4/SiO2 NPs can be easily dispersed in aqueous medium. The experimental results also show that the NPs have superparamagnetism, indicating that the aminated-CoFe2O4/SiO2 NPs can be used as an effective carrier for the enzyme immobilization.  相似文献   

14.
The effects of C60 cluster ion beam bombardment in sputter depth profiling of inorganic-organic hybrid multiple nm thin films were studied. The dependence of SIMS depth profiles on sputter ion species such as 500 eV Cs+, 10 keV C60+, 20 keV C602+ and 30 keV C603+ was investigated to study the effect of cluster ion bombardment on depth resolution, sputtering yield, damage accumulation, and sampling depth.  相似文献   

15.
In the present study, SF5+ and C60+ were used as primary ions for sputtering and Bi3+ was used as primary ions for analysis. The depth profiling procedure was utilized to make 3D images of the chemistry of single cultured cells and tissue samples of intact intestinal epithelium.The results show sputtering of organic material from cells and tissue with both SF5+ and C60+ sources. Cholesterol fragments were found in the superficial layers when sputtering with C60+. Spectra were collected revealing the change in yield along the z-axis of the sample. 3D images of the localization of Na, K, phosphocholine and cholesterol were constructed with both ion sources for single cell cultures and the mouse intestine.Cryostate sections of mouse intestine were analysed in 2D and the results were compared with the 3D image of the intestine. The localization of cholesterol and phosphocholine was found to be similar in cryostate sections analysed in two dimensions and the sputtered, freeze-dried intestine analysed in 3D. The comparison of 2D and 3D images suggest that the phosphocholine signal faded with C60+ sputtering. In conclusion, both C60+ and SF5+ can be used as primary ion sources for sputtering of organic material from cells and tissues. Consecutive analysis with a Bi3+ source can be used to obtain image stacks that could be used for reconstruction of 3D images.  相似文献   

16.
Previous studies suggest that granular interfaces induce a natural and persistent super-hydrophilicity in TiO2-SiO2 composite thin films deposited by sol-gel route. This effect enables to consider self-cleaning applications that do not require a permanent UV exposure, whereas such a permanent exposure is necessary for pure TiO2 films. In this study, TiO2-SiO2 composite thin films have been deposited from a TiO2 anatase crystalline suspension and different SiO2 polymeric sols. Wettability studies show that a suitable control of the TiO2-SiO2 mixed sol formulations noticeably enhances persistence of the natural super-hydrophilicity in composite films. It is shown that, beside granular interface effects, modifications in the composite film morphologies can noticeably influence wettability properties.  相似文献   

17.
(Na0.85K0.15)0.5Bi0.5TiO3 thin films were deposited on LaNiO3(LNO)/SiO2/Si(1 0 0) and Pt/Ti/SiO2/Si(1 0 0) substrates by metal-organic decomposition, and the effects of bottom electrodes LNO and Pt on the ferroelectric, dielectric and piezoelectric properties were investigated by ferroelectric tester, impedance analyzer and scanning probe microscopy, respectively. For the thin films deposited on LNO and Pt electrodes, the remnant polarization 2Pr are about 22.6 and 8.8 μC/cm2 under 375 kV/cm, the dielectric constants 238 and 579 at 10 kHz, the dielectric losses 0.06 and 0.30 at 10 kHz, the statistic d33eff values 95 and 81 pm/V. The improved piezoelectric properties could make (Na1−xKx)0.5Bi0.5TiO3 thin film as a promising candidate for piezoelectric thin film devices.  相似文献   

18.
Inspired by the phenomenological differences of layers in oyster shell and the morphological mimicry of SiO2 thin film, a folded-structure SiO2 was created by simple spray deposition system. The folded-structure SiO2 was analyzed by scanning electron microscopy, energy dispersive spectrometer and microindentation. At the molecular level, the chalky and the folia were assembled and determined through biomineralization based on the differences of soluble protein in layers. At the macro-scale, the granular SiO2 particles deposited at the surface of shell layers or Ca(OH)2 and grew into thin film, thus leading to mimic the morphology of substrate.  相似文献   

19.
Enhancement of the 1D2-3H4 red emission in CaTiO3:Pr3+ with addition of nanosized SiO2 fabricated by a solid state reaction method is reported. The dynamical processes for the improvement of red emission were systematically investigated using photoluminescence (PL) and PL excitation spectra, and diffused reflectance spectra as well as time decay patterns of PL and persistent afterglow. Higher efficiency of energy transfer from CaTiO3 host to the activator Pr3+ due to the improvement of crystallinity by SiO2 addition was discussed in comparison with that of the SiO2 free sample. The enhancement of persistent afterglow after the cessation of excitation in SiO2 added CaTiO3:Pr3+ was also analyzed by theoretically fitted results.  相似文献   

20.
SiO2@Gd2MoO6:Eu3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Gd2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrate that the Gd2MoO6:Eu3+ layers on the SiO2 spheres begin to crystallize after annealing at 600 °C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 600 nm), are not agglomerated, and have a smooth surface. The thickness of the Gd2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). The Eu3+ shows a strong PL luminescence (dominated by 5D0-7F2 red emission at 613 nm) under the excitation of 307 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号