首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
X-ray diffraction, Mössbauer spectroscopy and magnetization measurements were used as complementary methods to obtain structural data and to determine magnetic properties of the mechanically synthesized and subsequently thermally treated Co-Fe-Ni alloys. New, however approximate, phase diagrams were established on the basis of X-ray diffraction investigations. Mössbauer spectroscopy and magnetization measurements allowed to reveal practically linear correlation between the average values of the hyperfine magnetic field induction, 〈Bhf〉, and the effective magnetic moments, μeff, of the alloys. The decrease in 〈Bhf〉 with the number of electrons per atom, e/a, was observed. Moreover, the dependence of μeff on the valence 3d and 4s electrons per atom follows the Slater-Pauling curve. Thermal treatment of mechanosynthesized Co-Fe-Ni alloys led to some changes in the phase diagrams, increase in the grain size and decrease of the level of internal strains in alloys. Dependencies of lattice constants, average hyperfine magnetic fields, effective magnetic moments and Curie temperatures on the number of electrons per atom have the same trends for mechanically synthesized as well as for thermally treated alloys.  相似文献   

2.
Two simple models were developed in order to determine the chemical composition of both nanocrystals and intergranular amorphous phases in nanocrystallized Fe73.5Si13.5B9Nb3Cu1 containing Ge using data from X-ray diffraction and Mössbauer spectroscopy techniques. Saturation magnetization of the amorphous intergranular matrix (Msam) was calculated considering the contribution of the α-Fe(Si,Ge) nanocrystals and saturation magnetization of the alloys. The behavior of Msam with the iron content of the matrix was obtained and discussed. The exchange stiffness constant for the nanograins and for the amorphous phases was determined. The increment in the coercive field (Hc) with increasing Ge content was evaluated using two theoretical models for the random magnetocrystalline anisotropy constant (〈K1〉). Results show that the magnetic hardening observed could not be attributed to an increase in 〈K1〉 but mainly to an important increment of the magnetostriction constant of the α-Fe(Si,Ge) nanocrystals (λscr). Values for λscr are proposed.  相似文献   

3.
4.
Structural and magnetic properties of two rapidly solidified and post-annealed Fe60Pt15B25 and Fe60Pt25B15 alloys are compared. The as-quenched Fe60Pt15B25 ribbon was fully amorphous whereas in the Fe60Pt25B15 alloy the amorphous phase coexists with an fcc FePt disordered solid solution. Differential scanning calorimetry curves of both alloys reveal a single exothermal peak with onset temperatures of 873 and 847 K for Fe60Pt15B25 and Fe60Pt25B15, respectively. Magnetically hard, tetragonal ordered L10 FePt and magnetically soft Fe2B nanocrystalline phases were formed due to the annealing of the alloys, as indicated by X-ray diffraction and Mössbauer spectroscopy measurements. Two-phase behavior was detected in the temperature dependence of magnetization of the annealed samples. A magnetic hardening was observed for all annealed ribbons. Magnetic properties of the annealed alloys, studied by hysteresis loop measurements, were related to the differences in the relative fractions of the hard and soft magnetic phases calculated from Mössbauer spectra. The alloy with 25 at% Pt exhibits better hard magnetic properties (Hc=437 kA/m, Mr/Ms=0.74) than the alloy with smaller Pt content (Hc=270 kA/m, Mr/Ms=0.73) mainly due to the larger abundance of the ordered tetragonal FePt phase.  相似文献   

5.
The influence of Fe additions on the martensitic transformation and magnetic properties of Mn-rich Ni-Mn-Ga alloys was investigated by substituting either 1 at% Fe for each atomic species or by substituting Ni with varying amounts of Fe. The magnetic structure of the alloys was studied using 57Fe Mössbauer spectroscopy. Mössbauer spectra revealed typical paramagnetic features in Mn-rich Ni-Mn-Ga-Fe alloys owing to the preferential site occupancy of Fe atoms at Ni sites. The evolution of the magnetic properties and phase stability has been correlated with the chemical and atomic ordering in these alloys.  相似文献   

6.
In this work we report the structure and magnetic properties of a series of single-phase indium-substituted yttrium iron garnet (In-YIG) nanoparticles with nominal composition of Y3InxFe5−xO12 (x=0.1, 0.2, 0.3 and 0.4) prepared by conventional mixed oxide route. Based on XRD results, the lattice parameters of the samples increased with increase in In3+ content due to its larger ionic radius. Mössbauer results confirmed the substitution of In3+ for Fe3+ in [a] site of YIG structure. Further, the magnitudes of the magnetic hyperfine field (MHF) were seen to reduce due to indium substitution. Moreover, a rising trend was observed for saturation magnetization (MS) of the samples with x>0.2 owing to the substitution of non-magnetic In3+ for Fe3+. However, the observed initial drop of MS for the sample with x=0.2 compared to that with x=0.1 is possibly attributed to the dominance of spin canting over the net magnetization rise caused by In3+ in [a] sites.  相似文献   

7.
High-resolution X-ray measurements near a nuclear resonance reveal the complete vibrational spectrum of the probe nucleus. Because of this, nuclear resonance vibrational spectroscopy (NRVS) is a uniquely quantitative probe of the vibrational dynamics of reactive iron sites in proteins and other complex molecules. Our measurements of vibrational fundamentals have revealed both frequencies and amplitudes of 57Fe vibrations in proteins and model compounds. Information on the direction of Fe motion has also been obtained from measurements on oriented single crystals, and provides an essential test of normal mode predictions. Here, we report the observation of weaker two-quantum vibrational excitations (overtones and combinations) for compounds that mimic the active site of heme proteins. The predicted intensities depend strongly on the direction of Fe motion. We compare the observed features with predictions based on the observed fundamentals, using information on the direction of Fe motion obtained either from DFT predictions or from single crystal measurements. Two-quantum excitations may become a useful tool to identify the directions of the Fe oscillations when single crystals are not available.  相似文献   

8.
A single phase manganese ferrite powder have been synthesized through the thermal decomposition reaction of MnC2O4·2H2O-FeC2O4·2H2O (1:2 mole ratio) mixture in air. DTA-TG, XRD, Mössbauer spectroscopy, FT-IR and SEM techniques were used to investigate the effect of calcination temperature on the mixture. Firing of the mixture in the range 300-500 °C produce ultra-fine particles of α-Fe2O3 having paramagnetic properties. XRD, Mössbauer spectroscopy as well as SEM experiments showed the progressive increase in the particle size of α-Fe2O3 up to 500 °C. DTA study reveals an exothermic phase transition at 550 °C attributed to the formation of a Fe2O3-Mn2O3 solid solution which persists to appear up to 1000 °C. At 1100 °C, the single phase MnFe2O4 with a cubic structure predominated. The Mössbauer effect spectrum of the produced ferrite exhibits normal Zeeman split sextets due to Fe3+ions at tetrahedral (A) and octahedral (B) sites. The obtained cation distribution from Mössbauer spectroscopy is (Fe0.92Mn0.08)[Fe1.08Mn0.92]O4.  相似文献   

9.
A model used to describe the 57Fe Mössbauer spectra for the binary BCC iron alloys rich in iron has been extended to account for the alloy crystallographic ordering. The ordering is accounted for by introducing single order parameter. Extension of the model is described in detail. The model has been tested applying it to the Fe–Cu alloys obtained by the arc melting and to the Fe–Zn alloys prepared by the solid state reaction. Random alloys are obtained up to ∼2 at% of Cu, and up to ∼8 at% of Zn. For higher impurity (minor alloy component) concentration it has been found that Cu atoms try to avoid Fe atoms in the iron matrix as nearest neighbors, while the opposite happens to the Zn atoms, albeit at much lesser scale, i.e., Zn–Zn interactions are much weaker than Fe–Zn interactions at the nearest neighbor distance. Perturbations to the iron magnetic hyperfine field (spin density) and electron (charge) density on the iron nucleus have been obtained for both series of alloys versus impurity concentration.  相似文献   

10.
Microstructure by X-ray diffraction and Mössbauer spectroscopy, and isothermal magnetic entropy changes in the bulk amorphous Fe60Co5Zr8Mo5W2B20 alloy in the as-quenched state and after annealing at 720 K for 15 min are studied. The as-cast and heat treated alloy is paramagnetic at room temperature. The quadrupole splitting distribution is unimodal after annealing indicating the more homogenous structure in comparison with that for the as-cast alloy. Curie temperature slightly increases after annealing from 265±2 K in the as-quenched state to 272±2 K and the alloy exhibits the second order magnetic phase transition. The maximum of isothermal magnetic entropy changes appears at the Curie points and is equal to 0.30 and 0.42 J/(kg·K) for the alloy in the as-quenched state and after annealing, respectively. In the paramagnetic region the material behaves as a Curie-Weiss paramagnet.  相似文献   

11.
High-resolution electron microscopy (HREM) reveals in the as-quenched Fe90Zr7B3 alloy the existence of medium range ordered (MRO) regions 1-2 nm in size. Transmission Mössbauer spectroscopy confirms that these regions are α-Fe MRO ones. Above the Curie point of the amorphous phase (TC=(257±2)K) they behave like non-interacting superparamagnetic particles with the magnetization decreasing linearly with the temperature. For these particles the average magnetic moment of 390μB and the average size of 1.7 nm, in excellent agreement with HREM observations, were estimated. The maximum of the isothermal magnetic entropy change at the maximum magnetizing field induction of 2 T occurs at the Curie temperature of the amorphous phase and equals to 1.05 Jkg−1 K−1. The magnetic entropy changes exhibit the linear dependence on the maximum magnetizing field induction in the range 0.5-2 T below, near and above TC. Such correlations are attributed to superparamagnetic behavior of α-Fe MRO regions.  相似文献   

12.
A simple model, based on the relative occupancy of tetrahedral and octahedral sites by different cations, is proposed for the magnetocrystalline anisotropy of mixed ferrite nanoparticles. According to this model, the total magnetocrystalline anisotropy is the weighted average of the contributions of the anisotropies of Fe3+ and M2+ ions in A and B sites. The model predictions are confirmed in the case of cobalt-zinc ferrite.  相似文献   

13.
Summary The total and partial distribution functions of a metalloid/transition-metal amorphous alloy (Fe8B15) have been calculated by means of a ?nonstandard? hard-sphere dense-random-packing model. Based on these results, a comparison with the ?canonical? dense-random-packing model is discussed.
Riassunto Si presenta un calcolo delle funzioni di distribuzione radiale parziali e totali di una lega metallo-metalloide amorfa (lega Fe-B) generate mediante simulazione numerica. La struttura viene realizzata tramite un modello ad impaccamento di sfere rigide basato su criteri di crescita probabilistici. I risultati sono confrontati con il modello ad impaccamento denso e casuale (dense random packing) ?canonico? di Bennet.

Резюме Вьічисляются полньіе и парциональньіе функции распределения для аморфного сплава ?металлоид-переходной металл? (Fe8B15), используя ?нестандартную⎴ модель плотной случайной упаковки твердых сфер. Полученные результаты сравниваются с результатами ?канонической? модели плотной случайной упаковки.
  相似文献   

14.
As-deposited a-SiNx:H (0.1<x<0.9) thin films prepared by evaporation of silicon under a flow of nitrogen and hydrogen ions exhibit visible photoluminescence at room temperature without any posttreatment. The nitrogen concentration was determined by X-ray photoemission spectroscopy. The structural characterization was performed with Fourier transform infrared absorption spectroscopy. The optical gap was obtained from transmission measurements in the ultraviolet–visible–near infrared range. These studies were correlated to the evolution of the photoluminescence properties.  相似文献   

15.
Thermal stability and crystallization of the Fe81B12Si4C2 alloy were investigated in the temperature range 25-700 °C by the XRD and Mössbauer analysis. It was shown that on heating the as-prepared amorphous Fe81B12Si4C2 alloy undergoes thermal stabilization through a series of structural transformations involving the process of stress-relieving (temperature range 200-400 °C), followed by a loss of ferromagnetic properties (Curie temperature at 420 °C) and finally crystallization (temperature range 450-530 °C). The process of crystallization begins by formation of two crystal phases: Fe3B and subsequently Fe2B, as well as a solid solution α-Fe(Si). With increase in annealing temperature, the completely crystallized alloy involved only two phases, Fe2B and solid solution α-Fe(Si).XRD patterns established a difference in phase composition and size of the formed crystallites during crystallization depending on the side (fishy or shiny) of the ribbon. The first nuclei of the phase α-Fe3Si were found on the shiny side by XRD after heat treatment even at 200 °C but the same phase on the fishy side of ribbon was noticed after heat treatment at 450 °C. The largest difference between the contact and free surface was found for the Fe2B phase crystallized by heating at 700 °C, showing the largest size of crystallites of about 130 nm at 700 °C on the free (shiny) surface.  相似文献   

16.
Verma  H. C.  Rawat  A.  Paliwal  B. S.  Tripathi  R. P. 《Hyperfine Interactions》2002,142(3-4):643-652
Mössbauer studies of the Itawa-Bhopji meteorite fallen on May 30, 2000 in Rajasthan, India, show that the main iron minerals in it are Fe–Ni (kamacite/taenite), troilite, olivine and pyroxene. These provide characteristic signatures of an ordinary chondrite. Mössbauer absorption areas corresponding to different phases favour its classification as L/LL-type ordinary chondrite. The iron in the olivine is unusually high and the metallic iron is quite low, showing that it has faced oxidizing conditions prior to fall.  相似文献   

17.
Mössbauer spectroscopy was used to probe the site-specific information of a K0.84Fe1.99Se2 superconductor. A spin excitation gap, ΔE ≈5.5 meV, is observed by analyzing the temperature dependence of the hyperfine magnetic field (HMF) at the iron site within the spin wave theory. Using the simple model suggested in the literature, the temperature dependence of the HMF is well reproduced, suggesting that, below room temperature, the alkali metal intercalated iron-selenide superconductors can be regarded as ferromagnetically coupled spin blocks that interact with each other antiferromagnetically to form the observed checkerboard-like magnetic structure.  相似文献   

18.
Magnetic properties of nanocrystalline NiFe2O4 spinel mechanically processed for 350 h have been studied using temperature dependent from both zero-field and in-field 57Fe Mössbauer spectrometry and magnetization measurements. The hyperfine structure allows us to distinguish two main magnetic contributions: one attributed to the crystalline grain core, which has magnetic properties similar to the NiFe2O4 spinel-like structure (n-NiFe2O4) and the other one due to the disordered grain boundary region, which presents topological and chemical disorder features (d-NiFe2O4). Mössbauer spectrometry determines a large fraction for the d-NiFe2O4 region (62% of total area) and also suggests a speromagnet-like structure for it. Under applied magnetic field, the n-NiFe2O4 spins are canted with angle dependent on the applied field magnitude. Mossbauer data also show that even under 120 kOe no magnetic saturation is observed for the two magnetic phases. In addition, the hysteresis loops, recorded for scan field of 50 kOe, are shifted in both field and magnetization axes, for temperatures below about 50 K. The hysteresis loop shifts may be due to two main contributions: the exchange bias field at the d-NiFe2O4/n-NiFe2O4 interfaces and the minor loop effect caused by a high magnetic anisotropy of the d-NiFe2O4 phase. It has also been shown that the spin configuration of the spin-glass like phase is modified by the consecutive field cycles, consequently the n-NiFe2O4/d-NiFe2O4 magnetic interaction is also affected in this process.  相似文献   

19.
Several novel tin(IV) adducts of amidines, [SnClPh3L], [SnCl2Ph2L] and [SnBr4L] {L=N,N-diphenylacetamidine (Hdpac) or N,N-diphenylbenzamidine (Hdpba)}, were prepared and investigated by Mössbauer spectroscopy which was an important tool for the elucidation of bonding and structural features. The resulting Mössbauer data also led to the conclusion that the tin(IV) centre for the adduct [SnClPh3L] is pentacoordinated in a trigonal bipyramidal arrangement and hexacoordinated for [SnCl2Ph2L] and [SnBr4L] in a geometric patterns of an octahedral. The amidines act as monodentate ligands to the metal centre for the former and bidentate for the latter.  相似文献   

20.
The role of aluminum with respect of its influence on some intrinsic magnetic properties of the nanocrystalline Finemet, such as saturation magnetization, Curie temperature, spin-wave stiffness constant and hyperfine magnetic fields was investigated. The strengthening effect of Al on the exchange interaction was observed for the alloys with small Al content (up to 3 at.%). Higher concentration of Al (5-7 at.%) led to considerably suppressed exchange interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号