首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The optical, structural, and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids were investigated at 397.5, 532, and 795 nm. The TEM and spectral measurements have shown temporal dynamics of size distribution of Ag nanoparticles in solutions. The thermal-induced self-defocusing dominated in the case of high pulse repetition rate as well as in the case of nanosecond pulses. In the case of low pulse repetition rate, the self-focusing (γ = 3 × 10−13 cm2 W−1) and saturated absorption (β = −1.5 × 10−9 cm W−1) of picosecond and femtosecond radiation were observed in these colloidal solutions. The nonlinear susceptibility of Ag nanoparticles ablated in water was measured to be 5 × 10−8 esu (at λ = 397.5 nm).  相似文献   

2.
We report an extracellular synthesis of silver nanoparticles (SNPs) by Phoma glomerata (MTCC-2210). The fungal filtrate showed rapid synthesis in bright sunlight. The Fourier transform infrared spectroscopy (FTIR) revealed the presence of a protein cap on the silver nanoparticle, which leads to increase stability of SNP in the silver colloid. X-ray diffraction (XRD) analysis showed the number of Bragg's reflection, which are due to the face centered cubic structure of the crystalline SNPs. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), nanoparticle tracking and analysis (NTA) demonstrated the synthesis of polydispersive and spherical SNPs. Energy dispersive X-ray spectroscopy (EDX) was used to confirm the elemental composition of the sample and Zeta potential measurement was carried out to determine the stability of mycofabricated SNPs.The alkaline pH, room temperature, sunlight demonstrated optimum synthesis. Apart from the physical conditions, concentration of silver nitrate and amount of fungal filtrate affects the mycofabrication process. The study of cultural and physical parameters during the mycofabrication of SNPs by P. glomerata will be helpful in order to increase the yield of mycofabricated SNPs of desired shape and size. The process of mycofabrication of SNPs by P. glomerata was found to be eco-friendly, safe and cost-effective nature.  相似文献   

3.
We have studied epitaxial submonolayers of Ag and Au deposited one after another onto W(1 1 0) at room temperature and subsequently annealed at 600 K. Photoemission spectroscopy of valence bands and the Ag3d5/2 core level has been used to monitor two-dimensional alloy formation. The extent of alloying depends on the order of deposition, composition and annealing. We have also studied the reaction of alloy surfaces to exposure of molecular oxygen at 300 and 600 K.  相似文献   

4.
Poly(methacrylic acid) (PMA) stabilized silver nanoparticles (Ag NPs), also used in the surface modification of clothing fibers, were fabricated via chemical reduction processes under UV irradiation. To obtain an uniform size distribution it has been designed a new “two-step” process which employs two different UV radiation densities in order to control the kinetics of NPs nucleation. The as produced nanoparticles were characterized by UV-vis absorption spectroscopy and TEM microscopy. The results show the reduction of the Ag ions and the nanoparticles nucleation in the first step. In the second step, the final Ag NPs size distribution is controlled through a quick cross-linking of the PMA that freezes out any further modification. A narrow size distribution with more than 80% NPs smaller than 10 nm and none larger than 25 nm was obtained and the long-term stability (one month) of the colloidal solution was verified.  相似文献   

5.
镧与真空沉积银纳米粒子的金属间化合   总被引:3,自引:0,他引:3       下载免费PDF全文
根据HumeRothery规则,分析了银与镧两元素之间形成金属间化合物的倾向性,并根据真空蒸发沉积的条件,分析了在真空蒸发沉积情况下镧与银之间形成金属间化合物的可能性.用X射线光电子能谱化学位移方法对真空蒸发沉积的银、镧薄膜进行了分析,结果表明在真空沉积条件下镧与银之间的确形成了金属间化合物. 关键词: 金属间化合物 镧 银 纳米粒子  相似文献   

6.
The thermo-optical properties of colloidal silver nanoparticles (AgNPs) are investigated under a low power laser irradiation at 532 nm. Colloidal AgNPs are synthesized by nanosecond pulsed laser ablation of a pure silver plate in distilled water. The morphology and size of the AgNPs are determined by transmission electron microscopy. Closed Z-scan measurements reveal that nonlocal thermo-optic process is responsible for the nonlinear refractive index of colloid containing different concentrations of silver nanoparticles. The Z-scan behavior of the nanoparticle samples has been investigated based on a nonlocal thermo-optic process and it is shown that the aberrant thermal lens model is in excellent agreement with the experimental results. Z-scan measurement fits have allowed the values of nonlinear refractive index (n2) and thermo-optic coefficients (dn/dt) to be determined at different concentrations of silver nanoparticles. Large enhancement factors were measured for values of n2 and dn/dt of the colloids at higher silver nanoparticle volume fraction. Our results suggest that nonlocal thermal nonlinear processes will play an important role in the development of photonic applications involving metal nanoparticle colloids.  相似文献   

7.
电子束蒸发和离子束溅射HfO_2紫外光学薄膜   总被引:1,自引:0,他引:1  
邓文渊  李春  金春水 《中国光学》2010,3(6):630-636
HfO2薄膜在紫外光学中具有十分重要的地位,不同方法制备的HfO2薄膜特性不同,可以满足不同的实际应用需求。本文分别利用电子束蒸发和离子束溅射方法制备了用于紫外光区域的HfO2薄膜,并对薄膜的材料和光学特性进行了表征与比较。通过对单层HfO2薄膜的实测透射和反射光谱进行数值反演,得到了HfO2薄膜在230~800 nm波段的折射率和消光系数色散曲线,结果表明两种方法制备的HfO2薄膜在250nm的消光系数均小于2×10-3。在此基础上,制备了两种典型的紫外光学薄膜元件(紫外低通滤波器和240nm高反射镜),其光谱性能测试结果表明,两种不同方法制备的器件均具有较好的光学特性。  相似文献   

8.
Silver nanoparticles in chitosan medium were prepared by the chemical reduction method. Silver nitrate and hydrazine were used as the precursor and reducing agent in the present of chitosan as a natural host polymer. The samples are characterized by UV–visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The measurements of nonlinear optical properties were defined by Z-scan technique using green CW laser beam operated at 532 nm wavelengths. Thermal effect has a dominant role in the overall material nonlinearity with CW laser. It is shown that the synthesized samples have a negative nonlinear refractive index.  相似文献   

9.
The process of the formation of silver nanoparticles (AgNPs) via the method of galvanic replacement (GR) of Ag+ with aluminum powder in sodium polyacrylate (NaPA) solutions in the ultrasonic (US) field has been studied. It was observed, that the yellow colloidal solutions of stabilized AgNPs with the absorption maximum at ∼ 410 nm were obtained under the application of US power by 20 W and frequency by 20 kHz in the wide range of AgNO3 and NaPA concentrations (0.1 – 0.5 mM and 0.5 – 5.0 g/L respectively) at 25 0C. It was shown, that the GR process under US field occurs without of the significant induction period. Using the UV–vis spectroscopy the kinetics of AgNPs formation has been studied and it was observed the first order kinetics with respect to Ag+ ions both for the nucleation and growth processes. It was found that observable rate constants of nucleation are close for the all experimental conditions but the observable rate constants of growth decreased with increasing of initial concentration of AgNO3. Based on the obtained kinetic data it was proposed a mechanism of the formation of AgNPs consisted of the following two main stages: 1) the nucleation with the formation of primary nanoclusters (AgNCs) on aluminum surface followed by their ablation from the surface of the sacrificial metal by ultrasound into bulk of solution; 2) the transformation of AgNCs in AgNPs via growth from the Al surface and / or agglomeration of AgNCs. Using TEM it was found that the size of obtained AgNPs does not exceed of 25 nm and slightly depends on the initial concentrations of precursors. High antimicrobial activity of obtained colloidal solutions against gram-negative and gram-positive bacteria as well as against fungi was observed.  相似文献   

10.
Nanocomposite thin films (∼170 nm), composed of silver nanoparticles enclosed in an organosilicon matrix, were deposited onto stainless steel, with the aim of preventing biofilm formation. The film deposition was carried out under cold plasma conditions, combining radiofrequency (RF) glow discharge fed with argon and hexamethyldisiloxane and simultaneous silver sputtering. XPS and ToF-SIMS were used to characterize Ag-organosilicon films in native form and after ageing in saline solution (NaCl 0.15 M), in order to further correlate their lifetime with their anti-fouling properties. Two coatings with significantly different silver contents (7.5% and 20.3%) were tested. Surface analysis confirmed the presence of metallic silver in the pristine coating and revealed significant modifications after immersion in the saline solution. Two different ageing mechanisms were observed, depending on the initial silver concentration in the film. For the sample exhibiting the low silver content (7.5%), the metal amount decreased at the surface in contact with the solution, due to the release of silver from the coating. As a result, after a 2-day exposure, silver nanoparticles located at the extreme surface were entirely released, whereas silver is still present in the inner part of the film. The coating thickness was not modified during ageing. In contrast, for the high silver content film (20.3%), the thickness decreased with immersion time, due to significant silver release and matrix erosion, assigned to a percolation-like effect. However, after 18 days of immersion, the delamination process stopped and a thin strongly bounded layer remained on the stainless steel surface.  相似文献   

11.
A heated Ag+-doped glass is subjected to an external constant uniform electric field (Eo > 250 V/cm) parallel to its surface. Absorption spectra studies by linear polarized light imply the induction of a linear dichroism in the samples, after the above-mentioned thermo-electrical process. It is found that the increase in the temperature (400 °C ≤ T ≤ 600 °C), results in the formation of neutral silver multimers and clusters on the samples. Dichroism is the result of simultaneous application of the steady uniform electric field and heating. That is, the process aligns the produced silver nanoparticles along the applied electric field (Eo) during the aggregation of silver nano-clusters via dipole-dipole interaction, leading to the formation of chain-like conductive structures.  相似文献   

12.
安辉芝  赵清  杜为民 《中国物理》2004,13(10):1753-1757
ZnSe nanoparticles were synthesized by using a thermal evaporation method for a vapour phase reaction of zinc and selenium sources. The sample was characterized by XRD, TEM, HRTEM and Raman spectroscopy. Raman spectra of longitudinal-optical (LO) like mode was analysed by a macroscopic continuum dielectric model. Large broadening of LO-mode is homogeneous and comes from the relaxation of the phonons at the interface and contribution of defects. Surface modes give the main contribution to the asymmetry of the lineshape.  相似文献   

13.
才玺坤  张立超  梅林  时光 《中国光学》2014,7(5):808-815
研究了钼舟热蒸发工艺和离子束溅射方法制备的单层LaF3薄膜的特性。首先,采用分光光度计测量了LaF3薄膜的透射率和反射率光谱,使用不同模型拟合得出薄膜的折射率和消光系数。然后,采用应力仪测量了加热和降温过程中LaF3薄膜的应力-温度曲线。最后,采用X射线衍射仪测试了薄膜的晶体结构。实验结果表明,热蒸发制备的LaF3(RH LaF3)存在折射率的不均匀性,在193 nm,其折射率和消光系数分别为1.687和5×10-4,而离子束溅射制备的LaF3(IBS LaF3)折射率和消光系数分别为1.714和9×10-4。两种薄膜表现出相反的应力状态,RH LaF3薄膜具有张应力,而IBS LaF3具有压应力,退火之后其压应力减小。热蒸发制备的MgF2/LaF3减反膜在193 nm透过率为99.4%,反射率为0.04%,离子束溅射制备的AlF3/LaF3减反膜透过率为99.2%,反射率为0.1%。  相似文献   

14.
Silver nanoparticles (Ag NPs) were prepared via in situ reduction of silver nitrate (AgNO3) using polymeric micelles as nanoreactors without any additional reductant. The micelles were constructed from the amphiphilic star-shaped copolymer composed of poly(?-caprolactone) (PCL) segment, 2-(dimethylamino)ethyl methacrylate (DMAEMA or DMA) units and oligo(ethylene glycol)monomethyl ether methacrylate (OEGMA or OEG) units. The Ag NPs stabilized by those star-shaped copolymers were characterized using UV-vis spectrum, DLS, TEM and FTIR. It confirmed that PDMAEMA exhibited the reducing property unless pH was above 7. The Ag NPs were sphere-like with a diameter of 10-20 nm, which was independent of the architecture of the copolymer and AgNO3 concentration. Furthermore, the catalytic activity of these Ag NPs was investigated by monitoring the reduction of p-nitrophenol (4-NP) by NaBH4. The result showed that the Ag NPs formed by coordination reduction can be effectively applied in catalytic reaction.  相似文献   

15.
We use ultraviolet photoemission spectroscopy (UPS) to investigate the effect of oxygen and air exposure on pentacene thin film electronic structure. It is found that O2 and water do not react noticeably with pentacene on the timescale of several hours, whereas a mixture of oxygen atoms, singlet oxygen and ozone readily oxidizes the organic compound. We obtain no evidence for irreversible intercalation of oxygen into pentacene or considerable p-type doping after re-evacuation. Infrared spectroscopy and atomic force microscopy are used to study the oxidation of pentacene thin films. Our data suggest the oxidation of pentacene with reactive oxygen species to yield highly volatile reaction products as evidenced by significant mass-losses of the films.  相似文献   

16.
It is known that silver (Ag) nanoparticles are attractive due to their novel and mild chemical and physical properties. In this research, anisotropic mono-dispersed silver nanoparticles are synthesized via a simple chemical reduction method and assisted by Daxad 19 surfactant. The reactant temperatures and weight ratios of the chemical constituents play a key role in controlling the hybrid shaping mechanism. The results indicate that the reduction rate of Ag+ to Ag0 nanoparticles is enhanced significantly with increasing weight ratios of Daxad 19 and AgNO3 under controlled reactant temperature. The results show that the as-prepared silver nanoparticles are well-dispersed and uniform in size and shape. The dimensions of the particles are easily controlled. A comparison between experimental absorbance UV-visible spectra and simulated spectra from Mie's Scattering Theory is carried out. It is observed that the simulated spectrum confirms well with the optical behaviour of the experimental spectra.  相似文献   

17.
18.
Recently, there has been an increasing need of efficient synthetic protocols using eco-friendly conditions including low costs and green chemicals for production of metal nanoparticles. In this work, silver nanoparticles (silver NPs) with average particle size about 10 nm were synthesized by using a thermal decomposition technique. Unlike the colloidal chemistry method, the thermal decomposition method developed has advantages such as the high crystallinity, single-reaction synthesis, and easy dispersion ability of the synthesized NPs in organic solvents. In a modified synthesis process, we used sodium oleate as a capping agent to modify the surface of silver NPs because the oleate has a C18 tail with a double bond in the middle, therefore, forming a kink which is to be effective for aggregative stability. Importantly, the as-synthesized silver NPs have demonstrated strong antimicrobial effects against various bacteria and fungi strains. Electron microscopic studies reveal physical insights into the interaction and bactericidal mechanism between the prepared silver NPs and tested bacteria in question. The observed excellent antibacterial and antifungal activity of the silver NPs make them ideal for disinfection and biomedicine applications.  相似文献   

19.
We report on ZnO atomic layer deposition (ALD) with a precursor combination of diethylzinc as metal-precursor and pure oxygen (O2) as oxidant as an alternative to H2O as oxygen precursor. The temperature region of self-limiting ALD growth (ALD window) is determined and shows an increase in growth rate of about 60% compared to water as oxygen-precursor. Finally, in situ X-ray photoelectron spectroscopy (XPS) and synchrotron-radiation photoelectron spectroscopy (SR-PES) have been used to analyze the initial growth and film properties of ALD-ZnO deposited in monolayer steps using both precursor combinations.  相似文献   

20.
This paper presents a study on the crystallization and growth mechanism of selenium nanowires induced by silver nanoparticles at ambient conditions with special reference to the effects of factors such as the shapes and size of silver nanoparticles, the induced reaction time, and the molar ratio of Ag0 to SeO32− ions. The synthesis approach is conducted with no need of any stabilizers, and with no sonochemical process and/or templates. It is found that whether silver spherical particles or colloids can lead to the formation of nanowires with average diameter of 25 nm and lengths up to a few micrometers, and silver nanoplates lead to the formation of flat Se nanostructures. In particular, Au, Cu, Pt, and Pd particles cannot induce the growth of selenium nanowires in aqueous solution at room temperature. The results indicate that silver particles play a critical role in determining the growth of selenium nanowires. The lattice match between hexagonal-Se and orthorhombic- or trigonal-Ag2Se particles is the major driving force in the growth of such nanostructures. The findings would be useful for design and construction of heterogeneous nanostructures with similar lattice parameter(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号