首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of atomic oxygen (AO) irradiation on the structural and tribological behaviors of polyimide/Al2O3/SiO2 composites were investigated in a ground-based simulation facility, in which the energy of AO was about 5 eV and the flux was 7.2 × 1015 cm?2.s?1. The structural changes were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total-reflection FTIR (FTIR-ATR), while the tribological changes were evaluated by friction and wear tests as well as scanning electron microscopy (SEM) analysis of the worn surfaces. It was found that AO irradiation induced the oxidation and degradation of polyimide (PI) molecular chains. The destructive action of AO changed the surface chemical structure, which resulted in changes of the surface morphology and chemical composition of the samples. Friction and wear tests indicated that AO irradiation decreased the friction coefficient but increased the wear rate of both pure and Al2O3/SiO2 filled PIs.  相似文献   

2.
Y.J. Guo  X.T. Zu  B.Y. Wang  X.D. Jiang  X.D. Yuan  H.B. Lv  S.Z. Xu 《Optik》2009,120(18):1012-1015
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2.  相似文献   

3.
Metal-insulator-metal (MIM) capacitors were fabricated using ZrO2 films and the effects of structural and native defects of the ZrO2 films on the electrical and dielectric properties were investigated. For preparing ZrO2 films, Zr films were deposited on Pt/Si substrates by ion beam deposition (IBD) system with/without substrate bias voltages and oxidized at 200 °C for 60 min under 0.1 MPa O2 atmosphere with/without UV light irradiation (λ = 193 nm, Deep UV lamp). The ZrO2(∼12 nm) films on Pt(∼100 nm)/Si were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM), capacitance-voltage (C-V) and current-voltage (I-V) measurements were carried out on MIM structures. ZrO2 films, fabricated by oxidizing the Zr film deposited with substrate bias voltage under UV light irradiation, show the highest capacitance (784 pF) and the lowest leakage current density. The active oxygen species formed by UV irradiation are considered to play an important role in the reduction of the leakage current density, because they can reduce the density of oxygen vacancies.  相似文献   

4.
The atomic and electronic structures of the Nb/Al2O3(0001) and Ni/ZrO2(001) interfaces are calculated using density-functional theory. The formation energy of oxygen vacancies is estimated in bulk materials and in surface layers and interfaces for different uppermost atomic layers of oxide surfaces. The work of separation of metal films from oxide surfaces is determined. The effect of oxygen vacancies on the bonding of transition metals to atoms of a substrate determining adhesion at the metal-oxide interfaces is discussed. It is shown that the Nb(Ni)-O interaction at the interfaces weakens in the presence of surface oxygen vacancies.  相似文献   

5.
We investigated the effect of surface property of polyimide substrate on the formation of pentacene thin-film by using atomic force microscopy (AFM) and X-ray reflectivity (XRR) and diffuse scattering (XDS). Two types of polymer films were prepared: (1) polyimide (PAA-PI) from poly(amic acid) (PAA) (2) polyimide hybrid (PAA-PI-H) prepared by hybridizing the PAA and soluble polyimide (PI) with a octadecyl side chain. The hybridization ratio of PI to PAA was 2/98 in wt%. The water contact angle for PAA-PI-H and PAA-PI were around 80° and 64°, respectively. Morphology of pentacene with a ropelike structure and (1 1 0) peak around 1.4 Å in qz was found when it was deposited on PAA-PI thin-film. Different pentacene morphology was observed when it was deposited on PAA-PI-H thin-film. The different morphology might be due to a 5-6 nm thick additional layer (∼0.95 ρfilm) at the interface between pentacene and PAA-PI-H thin-film caused by a long alkyl side chain introduced to the polymer main chain.  相似文献   

6.
The atomic and electronic structures of Me/ZrO2(0 0 1) interfaces, where Me is Ni, Fe or a Ni-Fe alloy, are investigated by the plane wave pseudopotential method within density-functional theory. The work of separation of metal films from oxide substrate for the O- and Zr-terminated Me/ZrO2(0 0 1) interfaces is calculated. High adhesion at both Me/(ZrO2)O and Me/(ZrO2)Zr interfaces is found. The effect of oxygen vacancies on the adhesion at the metal-ceramic interfaces is also investigated. It is shown that Ni(Fe)-O interaction at the O-terminated interface weakens in the presence of interfacial oxygen vacancies. At interfaces with Ni-Fe alloys the adhesion depends strongly on the composition of the interfacial layers and their magnetic properties.  相似文献   

7.
Mo doped diamond-like carbon (Mo/DLC) films were deposited on Si substrates via unbalanced magnetron sputtering of molybdenum combined with plasma chemical vapor deposition of CH4/Ar. The microstructure of the films, characterized by transmission electron microscopy and selected area electron diffraction, was considered as a nanocomposite with nano-sized MoC particles uniformly embedded in the amorphous carbon matrix. The structure, morphology, surface composition and tribological properties of the Mo/DLC films before and after the atomic oxygen (AO) irradiation were investigated and a comparison made with the DLC films. The Mo/DLC films exhibited more excellent degradation resistant behaviors in AO environment than the DLC films, and the MoC nanoparticles were proved to play a critical role of preventing the incursion of AO and maintaining the intrinsic structure and excellent tribological properties of DLC films.  相似文献   

8.
以丙醇锆(ZrPr)为锆源,二乙醇胺(DEA)为络合剂,原位引入聚乙烯吡咯烷酮(PVP),在乙醇体系中成功地合成了PVP掺杂-ZrO2溶胶.采用旋涂法在K9玻璃基片上制备了PVP-ZrO2单层杂化薄膜.用不同掺杂量的PVP-ZrO2高折射率膜层与相同的SiO2低折射率膜层交替沉积四分之一波堆高反射膜.借助小角X射线散射研究胶体微结构,用红外光谱、原子力显微镜、紫外/可见/近红外透射光谱、椭圆偏振仪以及1064nm的强激光辐照实验对薄膜的结构、光学和抗激光损伤性能进行表征.研究发现,体系组成的适当配置可以在溶胶稳定的前提下实现ZrPr的充分水解,赋予薄膜良好的结构、光学和抗激光损伤性能.杂化体系中,DEA与ZPr之间强的配合作用大大降低了ZrO2颗粒表面羟基的活性,使得PVP大分子只是以微弱的氢键与颗粒的表面羟基作用而均匀分散于ZrO2颗粒的周围,对颗粒的形成和生长无显著影响.因而在实验研究范围内,随PVP含量的增大,PVP-ZrO2杂化膜层的折射率和激光损伤阈值均无显著变化.但是,薄膜中均匀分布的PVP柔性链可以有效促进膜层应力松弛,显著削弱不同膜层之间的应力不匹配程度、大大方便多层光学薄膜的制备.当高折射率膜层中PVP的质量分数达到15%—20%时,膜层之间良好的应力匹配使得多层高反射膜的沉积周期数可达到10以上.沉积10个周期的多层反射膜,在中心波长1064nm处透射率约为1.6%—2.1%,接近全反射特征,其激光损伤阈值为16.4—18.2J/cm2(脉冲宽度为1ns). 关键词: 溶胶-凝胶 2')" href="#">PVP-ZrO2 高反射膜 激光损伤  相似文献   

9.
Multilayer silica/alumina films were created by plasma immersion implantation and deposition to protect against atomic oxygen (AO) in low earth orbit environment. The AO erosion mechanism of polyimide under multilayer silica/alumina films has been investigated using a ground-based AO simulator and Monte Carlo model. The results demonstrate that protective films are detached and plumped due to AO undercutting, and the exterior silica film is partly detached proven by chemical composition depth profile and erosion patterns. The undercutting model involving collision, diffusion, reaction, gas releasing, and retroaction on films is proposed. Based on the model, scattered impingement has serious erosion, although AO does not directly attack interior polymer. AO erosion predictions at two neighborhood cracks are first studied by Monte Carlo model for various incidence angles of AO. The protective film between cracks hinders the escape of AO, and accelerates the erosion.  相似文献   

10.
The atomic and electronic structures of metal-rich noncentrosymmetric zirconium oxide synthesized by the ion beam sputtering of a metallic target in an oxygen atmosphere has been studied by X-ray photoelectron spectroscopy, Raman scattering, spectral ellipsometry, and quantum-chemical simulation. It has been established that ZrOx < 2 consists of ZrO2, metallic Zr, and zirconium suboxides ZrOy. The stoichiometry parameter of ZrOy has been estimated. It has been shown that the optical properties of ZrOx < 2 are determined by metallic Zr. A model of fluctuation of the width of the band gap and a potential for electrons and holes in ZrOx < 2 based on spatial fluctuations of the chemical composition has been proposed.  相似文献   

11.
FexPt100−x(30 nm) and [FexPt100−x(3 nm)/ZrO2]10 (x = 37, 48, 57, 63, 69) films with different ZrO2 content were prepared by RF magnetron sputtering technique, then were annealed at 550 °C for 30 min. This work investigates the effect of ZrO2 doping on the microstructural evolution, magnetic properties, grain size, as well as the ordering kinetics of FePt alloy films. The as-deposited films behaved a disordered state, and the ordered L10 structure was obtained by post-annealing. The magnetic properties of the films are changed from soft magnetism to hard magnetism after annealing. The variation of the largest coercivities of [FexPt100−x/ZrO2]10 films with the Fe atomic percentage, x and differing amounts of ZrO2 content reveals that as we increase the ZrO2 content we must correspondingly increase the amount of Fe. This phenomenon suggests that the Zr or O atoms of ZrO2 preferentially react with the Fe atoms of FePt alloy to form compounds. In addition, introducing the nonmagnetic ZrO2 can reduce the intergrain exchange interactions of the FePt/ZrO2 films, and the interactions are decreased as the ZrO2 content increases, the dipole interactions are observed in FePt/ZrO2 films as the ZrO2 content is more than 15%.  相似文献   

12.
以丙醇锆(Zr(OPr)4)为原料,乙酸(HAc)为络合剂,聚乙二醇(PEG200)和聚乙烯吡咯烷酮(PVP)为大分子添加剂,在乙醇体系中成功合成了ZrO2及聚合物掺杂ZrO2溶胶.用旋涂法在K9玻璃基片上制备单层光学增反射膜.借助小角X射线散射和激光动态光散射技术研究胶体的微结构.采用傅里叶变换红外光谱、差示扫描量热分析、X射线衍射分析、原子力显微镜、紫外/可见/近红外透射光谱以及椭偏仪对薄膜的结构和光学性能进行表征.用输出波长为1064 关键词: 二氧化锆 溶胶-凝胶 增反射膜 激光损伤  相似文献   

13.
选用三水醋酸铅、乙酰基丙酮酸锆、四异丙氧基钛、乙酰丙酮作初始材料,用同样的方法分别制备了锆钛酸铅(PZT)和钛酸铅(PT)两种固体前驱物. 采用改良型的溶胶-凝胶工艺技术,分别在不同的Pt-Ti-Si3N4-SiO2-Si基底上,按照不同的组合方式,制备了三种多层薄膜:PZT、PT/PZT-PZT/PT、PT/PZT/-/PZT/PT. 较详细地讨论了薄膜制备的工艺技术,发现当凝胶通过烧结和干燥后变成固态物质时,薄膜内部存在着较大的残余应力,当薄膜在600 ºC下退火时其内部残余应力可以被减小. 通过拉曼  相似文献   

14.
Leakage currents through Al/ZrO2/SiO2/n-Si metal-insulator-semiconductor (MIS) capacitors were studied. Thin SiO2 films were chemically grown on monocrystalline phosphorous doped silicon wafers. Zirconia films with thicknesses of 15 and 50 nm were deposited by radio frequency (rf) magnetron sputtering and, then, annealed in oxygen ambient at 850 C, for 1 h. The dielectric constant of the sputtered and annealed ZrO2 layer was of about 17.8. The equivalent oxide thickness (EOT) of the stack 15 nm and 50 nm-ZrO2/SiO2 structure was estimated to be 3.2 nm and 10.7 nm, respectively. The temperature dependence of the leakage currents was explained by Poole-Frenkel (PF) conduction mechanism. Shallow trap levels in the studied structure of about 0.2 eV and 0.46 eV were calculated. The existence of A and D-defects, due to the sputtering and high temperature annealing in oxygen, was suggested.  相似文献   

15.
Highly transparent and homogeneous nanocrystalline ZrO2 thin films were prepared by the sol–gel dip coating method. The X-ray diffraction (XRD) pattern of ZrO2 thin films calcined in air, O2 or N2 shows the formation of tetragonal phase with varying crystallite size. X-ray photoelectron spectroscopy (XPS) gives Zr 3d and O 1s spectra of thin film annealed in air, which reveal zirconium suboxide component (ZrOx, 0<x<2), Zr–O bond and surface defects. An average transmittance greater than 85% (in UV–vis region) is observed in all calcined samples. Photoluminescence (PL) reveals an intense emission peak at 379 nm and weak peaks at 294, 586 and 754 nm for ZrO2 film calcined in air. An enhancement of PL intensity and red-shift is observed in films calcined in O2 and N2 atmosphere. This is due to the reconstruction of zirconium nanocrystal interfaces and vacancies, which help passivate the non-radiative defects. The oxygen deficient defect, which is due to the distorted Zr–O bond, is suggested to be responsible for photoluminescence. The defect states in the nanocrystalline zirconia thin films play an important role in the energy transfer process. The luminescence defects in the film make it suitable for gas sensors development and tunable lasers.  相似文献   

16.
A new type of multicoated silica/zirconia/silver (SiO2/ZrO2/Ag) core-shell composite microspheres is synthesized in this paper. In the process, ZrO2-decorated silica (SiO2/ZrO2) core-shell composites were firstly fabricated by the modification of zirconia on silica microspheres through the hydrolysis of zirconium precursor. Subsequently, on SiO2/ZrO2 composite cores, silver nanoparticles were introduced via ultrasonic irradiation and acted as “Ag seeds” for the formation of integrate silver shell by further reduction of silver ions using formaldehyde as reducer. The resulting samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared, energy-dispersive X-ray, and UV-vis spectroscopy, indicating that zirconia and silver layers were successfully coated on the surfaces of silica microspheres.  相似文献   

17.
《Composite Interfaces》2013,20(8-9):643-656
Ternary hybrid nanocomposites of polyimide (PI), poly(vinylsilsesquioxane) (PVSSQ), and titania (PI/PVSSQ/Ti) were prepared by thermal imidization from 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA)-4,4'-oxydianiline (ODA) polyamic acid (BPDA–ODA PAA) and a sol-gel process from vinyltriethoxysilane(VSSQ) and titanium isopropoxide(Ti(OPr)4). The microstructure, interfacial interaction, and optical and thermo-mechanical properties of the hybrid films have been investigated. The phase morphology and the properties are influenced by the composition of PVSSQ and titania. For the PI/VSSQ/titania ternary hybrid systems, the particle size is significantly decreased and the inorganic particles are extremely finely distributed in the nanometer scale, suggesting that the interaction between the particles and the matrix increases. It is concluded that the addition of titania plays a compatibilizing role for the PI/PVSSQ binary hybrids, resulting in the enhancement of optical transparencies and thermo-mechanical properties of the binary hybrids.  相似文献   

18.
《Composite Interfaces》2013,20(4-5):475-488
A series of polyimide (PI)-silica hybrid nanocomposites are prepared from 3,3′,4,4′biphenyltetracarboxylic dianhydride (BPDA)-4,4′-oxydianiline (ODA) polyamic acid (PAA) and tetraethoxysilane (TEOS) or tetramethoxysilane (TMOS) by the sol-gel process. 3-Aminopropyltriethoxysilane (3-APS) is used to enhance the interfacial interaction between polyimide and silica. The morphology, interfacial interaction, and properties of the hybrids are investigated using scanning electron microscope (SEM), UV-vis spectroscopy, atomic force microscope (AFM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). SEM and AFM images indicate that silica particles of ca. 45-55 nm size are uniformly distributed in polyimide matrices and that the interfacial interaction between PI and TEOS is better than that between PI and TMOS. The optical transparencies of the PI/TEOS hybrids are better than that of the PI/TMOS hybrids. FTIR spectra confirm the Si O Si bond as well as the conversion of PAA to polyimide and PI/silica hybrid films. The thermal stability is increased after incorporation of the silicas in the polyimide matrix.  相似文献   

19.
《Applied Surface Science》2005,239(3-4):367-375
In this study the erosion of poly(vinyl fluoride) Tedlar by hyperthermal atomic oxygen (AO) has been examined using X-ray photoelectron spectroscopy (XPS). Initially the Tedlar film had F/C and O/C atom ratios of 0.45 and 0.11, which decrease to 0.018 and 0.04, respectively, after a 2-h exposure to a flux of 2 × 1015 atoms/cm2 s AO with an average kinetic energy of 5 eV. This exposure essentially produced a graphitic or amorphous carbon-like layer with a carbon content greater than 90 at.%. Longer AO exposures do not alter the composition of this layer significantly. Exposure to O2 or air nearly doubles the oxygen content in the near-surface region. This is due to dissociative oxygen adsorption at reactive sites formed at the polymer surface during AO exposure. Further exposure to AO removes this chemisorbed oxygen.  相似文献   

20.
ZrO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on structure and related properties of ZrO2 thin films were studied. Transmittance, thermal absorption, structure and residual stress of ZrO2 thin films were measured by spectrophotometer, surface thermal lensing technique (STL), X-ray diffraction and optical interferometer, respectively. The results showed that the structure and related properties varied progressively with the increase of oxygen partial pressure. The refractive indices and the packing densities of the thin films decreased when the oxygen partial pressure increased. The tetragonal phase fraction in the thin films decreased gradually as oxygen partial pressure increased. The residual stress of film deposited at base pressure was high compressive stress, the value decreased with the increase of oxygen partial pressure, and the residual stress became tensile with the further increase of oxygen pressure, which was corresponding to the evolution of packing densities and variation of interplanar distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号