首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contact angles and surface energy of wood, as well as interfacial shear strength between wood and polyvinyl chloride (PVC) were investigated and used to monitor the modifications generated on the surfaces of wood treated with a copper ethanolamine solution. An increase in surface energy of wood after treatments promotes wetting of PVC on wood surfaces. Improved interfacial shear strength between treated wood and PVC matrix can be attributed to the formation of a stronger wood-PVC interphase. This suggests that treatment may be used to improve the adhesion between wood surface and PVC in the formulation of wood fiber composites to yield products with enhanced mechanical properties and better biological and physical performance against decay and insect destroying wood.  相似文献   

2.
《Composite Interfaces》2013,20(2-3):319-341
The morphology and mechanical properties of reconstituted wood board waste-polyethylene composites were studied using virgin polyethylene (PE) and 2 wt% maleic anhydride (MA) modified polyethylene (MAPE) as matrices. Although the wood waste (WW) and PE are not compatible with each other, dynamic mechanical analyses (DMA) show considerable shifting in the α-transition temperature and crystallisation temperature (T c) of PE in the unmodified composites, indicating physical interaction between PE and WW. The increase in crystallinity with increasing WW content up to 50 wt% indicates that WW is a potential nucleating agent for PE. However, the tensile strength of the unmodified composites gradually decreases with WW content, indicating that the improvement in interface adhesion is essential for WW to be used as reinforcing fillers. Fourier transform infrared spectroscopic (FTIR) results indicate that MAPE interacts with WW through esterification and hydrogen bonding to form good adhesion between the two phases. Inward shifting in glass transition temperature (T g) for the MAPE-based composites containing less than 60 wt% WW indicates that WW and MAPE are partially compatible with each other. SEM micrographs of MAPE-based composites provide further evidence for this mechanism. The tensile strength of the MAPE-based composites is clearly higher than that of the virgin PE-based composites.  相似文献   

3.
The influence of oxygen plasma treatment on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fibers and aging effect of the oxygen plasma modified PBO fiber surfaces were investigated by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and dynamic contact angle analysis (DCAA), respectively. The results indicated that the oxygen plasma treatment introduced some polar groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. Surface wettability of PBO fibers may be significantly improved by increasing surface free energy of the fibers via oxygen plasma treatment. Aging effect of the oxygen plasma treated PBO fibers showed that the fiber surface wettability degraded in the first several days after the plasma treatment, and it was found to be changeless as the aging time continued as long as 30 days.  相似文献   

4.
The effect of oxygen-plasma treatment for Kevlar fibers on the interfacial adhesion and typical macro-properties of Kevlar fiber/bismaleimide composites was intensively studied. It is found that oxygen-plasma treatment significantly affects the interfacial adhesion by changing the chemistry and morphology of the surfaces of the fibers, and thus leading to improved interlaminar shear strength, water resistance and dielectric properties of the composites. However, the improvement is closely related to the treatment power and time. The best condition for treating Kevlar fiber is 70 W for 5 min. Oxygen-plasma treatment provides an effective technique for overcoming the poor interfacial adhesion of Kevlar fiber based composites, and thus showing great potential in fabricating high performance copper clad laminates.  相似文献   

5.
For this study, we investigated the effects of reactive gases (oxygen, nitrogen, and argon) on the shear behavior and fracture toughness of HDPE/steel joints by treating high-density polyethylene (HDPE) with plasma using a microwave method. We also investigated the effect of plasma treatment on the physical and chemical changes on the surface of HDPE. HDPE/steel joints were fabricated using a secondary bonding process. The results showed that the shear strength and fracture toughness of HDPE/steel joints treated with different reactive gases were ordered as follows, oxygen > nitrogen > argon. Specifically, the shear strength and fracture toughness of oxygen plasma-treated HDPE/steel joints were approximately 7600% and 2400% greater, respectively, than that of untreated HDPE/steel joints. The improvements in shear strength and fracture toughness are attributed to increase in surface roughness and the creation of carbonyl functional groups on the HDPE surface via plasma treatment.  相似文献   

6.
 建立了一套辉光放电等离子体对电容器薄膜进行表面处理的装置。采用N2,O2及Ar三种气体对聚丙烯、聚酯和聚苯硫醚膜进行了表面处理。红外光谱分析表明:薄膜表面的生成物与薄膜种类、气体种类和处理强度密切相关。场扫描电镜显示了薄膜表面的刻蚀现象明显。处理过的薄膜,非晶相被去除,球晶暴露。能谱分析说明了薄膜中C元素下降,N,O元素增加,但总体改变量很小。处理前后薄膜的直流击穿电压没有明显改变,但刻蚀过程造成的薄膜表面粗化可帮助电容器的浸渍过程更充分,从而可提高电容器的使用场强与储能密度。  相似文献   

7.
A new method of silane treatment of nanoclays is reported where in the clay is nanodispersed in hydrolyzed silanes. The surface functionalization of Cloisite® 15A nanoclay has been carried out using two different silane coupling agents: 3-aminopropyltriethoxy silane and 3-glycidyloxypropyltrimethoxy silane using varied amounts of silane coupling agents, e.g. 10, 50, 200, and 400 wt% of clay. The surface modification of Cloisite® 15A has been confirmed by Fourier transform infrared spectroscopy. The modified clays were then dispersed in epoxy resin, and glass fiber-reinforced epoxy clay laminates were manufactured using vacuum bagging technique. The fiber-reinforced epoxy clay nanocomposites containing silane modified clays have been characterized using small angle X-ray scattering, transmission electron spectroscopy and differential scanning calorimetry. The results indicate that the silane treatment of nanoclay aided the exfoliation of nanoclay and also led to an increase in mechanical properties. The optimized amount of silane coupling agents was 200 wt%. The nanocomposites containing clay modified in 200 wt% of silanes exhibited an exfoliated morphology, improved tensile strength, flexural modulus, and flexural strength. The improved interfacial bonding between silane modified nanoclays and epoxy matrix was also evident from significant increase in elongation at break.  相似文献   

8.
We studied the mechanism of adhesion between N2 plasma treated polypropylene (PP/N2) backing and a hybrid hydrogel (HG) produced by chemical crosslinking between poly(ethylene glycol) and soy albumin. The work of adhesion, measured by peel testing, was found to be 25 times higher for PP/N2 compared to untreated PP (≈5.0 J/m2 versus ≈0.2 J/m2). In order to understand the adhesion mechanism, we performed a detailed analysis of the surface chemical composition of PP and PP/N2 using X-ray photoelectron spectroscopy (XPS), chemical derivatization and attenuated total reflectance infra-red (ATR-IR) measurements. The results confirm incorporation of different nitrogen- (amine, amide,…) and oxygen- (hydroxyl, carboxyl,…) containing chemical groups on the PP/N2 surface. The derivatized functions were primary amine, hydroxyl, carboxyl and carbonyl groups. Chemical derivatization reactions validated the XPS results (except for carbonyl groups), and they clearly underlined the essential role of primary amine groups in the adhesion process. In fact, after derivatization of the amine functions, the work of adhesion was found to be 0.41 ± 0.12 J/m2. Participation of amine groups in the formation of covalent bonds at the interface between PP/N2 and HG was directly confirmed by ATR-IR measurements.  相似文献   

9.
This paper examines the growth of anatase TiO2 coating on a wood surface through the hydrolysis of tetrabutyl orthotitanate (TBOT) in different conditions, using a controlled hydrothermal method at low temperatures. Energy disperse X-ray analysis and Fourier transform infrared spectroscopy analysis confirm that the growth of TiO2 coating on a wood surface is bonded to hydrocarbon chains. Several reaction factors that influence the morphologies and amount of TiO2 present on wood surface were also investigated. As observed from the scanning electron microscopy images, the morphology and content of TiO2 grown on a wood surface could be controlled under appropriate reaction conditions. Approximately 32.6% TiO2 content on a wood surface could be obtained when specific conditions are applied.  相似文献   

10.
The present study explains the role of surface modification of constituent materials on composite material performance. The influence of silane and nano-hybrid coatings on mechanical properties of basalt fibers and composite materials on their base was investigated. Infrared spectroscopy indicated that modification of basalt fiber surface and nano-SiO2 was successfully applied. The surface modification leads to the significant increase in the tensile strength of basalt fibers compared to the non-coated fibers. The tensile strength of silane-treated fibers was established 23% higher than the non-coated fibers, indicating that silane plays a critical role in the strength retention of basalt fibers. Also it was pointed out that silane coupling agents can be used for the preparation of the nano-hybrid coating. Addition of SiO2 nanoparticles into the fiber surface was incorporated to enhance the interfacial bonding of basalt fiber reinforced epoxy composite.  相似文献   

11.
The effect of the surface roughness on interfacial properties of carbon fibers (CFs) reinforced epoxy (EP) resin composite is studied. Aqueous ammonia was applied to modify the surfaces of CFs. The morphologies and chemical compositions of original CFs and treated CFs (a-CFs) were characterized by Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). Compared with the smooth surface of original CF, the surface of a-CF has bigger roughness; moreover, the roughness increases with the increase of the treating time. On the other hand, no obvious change in chemical composition takes place, indicating that the treating mechanism of CFs by aqueous ammonia is to physically change the morphologies rather than chemical compositions. In order to investigate the effect of surface roughness on the interfacial properties of CF/EP composites, the wettability and Interfacial Shear Strength (IFSS) were measured. Results show that with the increase of the roughness, the wettabilities of CFs against both water and ethylene glycol improves; in addition, the IFSS value of composites also increases. These attractive phenomena prove that the surface roughness of CFs can effectively overcome the poor interfacial adhesions between CFs and organic matrix, and thus make it possible to fabricate advanced composites based on CFs.  相似文献   

12.
Although extensive research has been conducted in wood surface quality analysis, a unified approach to surface quality characterisation does not exist. Measurements of the variation in surface roughness and surface colour are used widely for the evaluation of wood surface quality. Colour is a basic visual feature for wood and wood-based products. Colour measurement is one of the quality control tests that should be carried out because the colour deviations are spotted easily by the consumers. On the other hand, a common problem faced by plywood manufacturers is panel delamination, for which a major cause is poor quality glue-bonds resulting from rough veneer. Rotary cut veneers with dimensions of 500 mm × 500 mm × 2 mm manufactured from alder (Alnus glutinosa subsp. barbata) and beech (Fagus orientalis Lipsky) logs were used as materials in this study. Veneer sheets were oven-dried in a veneer dryer at 110 °C (normal drying temperature) and 180 °C (high drying temperature) after peeling process. The surfaces of some veneers were then exposed at indoor laboratory conditions to obtain inactive wood surfaces for glue bonds, and some veneers were treated with borax, boric acid and ammonium acetate solutions. After these treatments, surface roughness and colour measurements were made on veneer surfaces. High temperature drying process caused a darkening on the surfaces of alder and beech veneers. Total colour change value (ΔE*) increased linear with increasing exposure time. Among the treatment solutions, ammonium acetate caused the biggest colour change while treatment with borax caused the lowest changes in ΔE* values. Considerable changes in surface roughness after preservative treatment did not occur on veneer surfaces. Generally, no clear changes were obtained or the values mean roughness profile (Ra) decreased slightly in Ra values after the natural inactivation process.  相似文献   

13.
O.M. Gradov  L. Stenflo 《Physics letters. A》2018,382(42-43):3083-3085
The nonlinear properties of surface charges are here analyzed under ideal conditions. We thus deduce a new single equation from the wellknown equations which govern the cold electron plasma motion. Simple formulas that describe the propagation of surface charge perturbations along the plasma boundary are also found.  相似文献   

14.
Extensive studies on the relationship between a copper thin film and its polyimide substrate show that the adhesion strength is very weak. In this work, we show how to reduce Cu film resistivity and improve the adhesion strength between Cu and polyimide. After nitrogen and oxygen plasma treatment, polyimide substrates can substantially improve the resistivity and adhesion strength deposited Cu. It is found that the lowest resistivity is 4.22 μΩ cm and the maximum adhesion strength is 72.23 MPa for a polymide substrate treated in oxygen plasma for 5 min.  相似文献   

15.
Poly (vinyl alcohol)/poly (ethylene oxide) (PEO/PVA) blends were modified by gamma irradiation in the presence of acrylic acid (AAc) monomer. The modified PVA/PEO blends were then complexed with silver nitrate salt and lithium trifluoromethanesulfonate. Transmission electron microscopy was used to determine the distribution as well as the particle size of the silver nanoparticles (NP) formed in the matrix. The UV–vis absorbance spectra of the prepared grafted nanocomposite membranes confirmed the formation of Ag NP based on their surface plasmon band at 438?nm. The electrical properties of the blended electrolyte polymer films were characterized and discussed.  相似文献   

16.
《Current Applied Physics》2020,20(10):1171-1175
The present study explored the effect of medium texture (MT) content on flexural properties and thermal expansion coefficients (CTES) of carbon/carbon (C/C) composites with multilayered pyrolytic carbon. The specimen with 39% MT exhibited maximum flexural strength of 221.55 MPa, increasing by 52% compared with pure high texture. While the flexural strength decreased when the MT content exceeded 39%. The excellent strength can be attributed to crack deflection between multilayered texture and the strong interface bonding between fibers and matrix. Moreover, the four specimens expressed a similar trend of CTES in the direction of XY and Z. In the direction of XY, the specimen with 39% MT had the lowest CTES from 800 °C to 2100 °C. Therefore, the C/C composites with 39% MT have the best mechanical and thermal expansion properties, which means that the properties of C/C composites can be optimized by controlling the texture.  相似文献   

17.
《Composite Interfaces》2013,20(5):321-332
Within the framework of this study, the physical modification of high-density polyethylene waste foil was performed using finely ground hazelnut flour to produce a composite whose physical, mechanical and flammable properties make it possible to use inside and outside of buildings. Three mixtures were produced with filler shares of 11, 26 and 42 vol.% using equipment that is normally used in polymer processing, and no refining additives were applied. The produced materials were analysed for their processing (mass flow ratio), physical (density and moisture content) and mechanical properties (tensile strength, elongation at break and dynamic thermal analysis) and resistance to environmental factors (swelling and water absorption, thermogravimetric analysis and combustion heat). The particle size distribution of the filler and morphological properties of the composites (scanning electron microscopy) were also investigated. It was vital to obtain an inexpensive material with low absorptivity. The resulting materials are characterised by a low density, acceptable low absorptive and good mechanical properties; also, they can constitute an important fuel once their practical properties have been exploited.  相似文献   

18.
A microwave plasma treatment in a down stream configuration was used to modify the natural hydrophobocity of untreated wool fibers. This property is a consequence of the presence of a Fatty acid monolayer (F-layer) on the outermost part of the fiber surface. The wool fibers treated with plasma were analyzed by means of X-ray photoelectron spectroscopy (XPS) without previous exposure to the air. Experiments have been carried out with air, water vapor, oxygen and nitrogen as plasma gas. The “in situ” analysis of the treated samples has permitted to differentiate between the plasma effects and those other linked to the exposure of the fibers to the air after their treatment. The results have evidenced the effects induced by the different active species generated by plasma from the different components of the air. In general, the intensity of CC peaks decreases and that of the CO, CO and OCO increases when using a gas containing oxygen species. Simultaneously, the intensity of the SS groups decreases and that of the sulphonate (SO3) increases. Other changes are also detected in the intensity of the N 1s level. The extent and characteristics of the oxidation and functionalisation of the hydrocarbon chains of the F-layer depend on the nature of gas. Thus, whereas treatments with plasmas of air and water vapor strongly affect the hydrocarbon chains of the F-layer, oxygen is less effective in the oxidation process. It has been also noted that the active species formed in the nitrogen plasma do not induce any significant change in the surface composition of the wool fibers.  相似文献   

19.
This work investigates different hemp surface modifications (mercerization, maleated polyethylene (MAPE) addition in solution or in melt blending) to improve the properties of linear medium density polyethylene (LMDPE). From the composites produced, a complete morphological and tensile characterization was performed for a fixed hemp content (30% wt.). The morphological analysis showed that both the direct (melt blending) and solution modifications were able to significantly improve the composites interface quality and therefore the tensile properties (151% increase in modulus and 36% increase in strength over the neat matrix) within the range of conditions tested.  相似文献   

20.
This paper reports on the comprehensive characterisation of heat treated kenaf fibre (KF) and its composites. The kenaf fibres were modified by heating for 2.5–12.5 h inside a drying oven. Heat treatment produces an increase in the crystallinity index and fibre strength of KF. The highest value of KF strength was recorded by applying heat treatment of 10 h on KF. The heat treatment results in the partial removal of impurities/extractives on the KF surface which is detected by scanning electron microscopy and X-ray photoelectron spectroscopy. Atomic force microscopy results signify the decrease of roughness, the increase in peak area density and the increase of the adhesion force on the surface area of heat treated KF. The effect of the heat treatment in enhancing the interface bonding characteristics between the KF and unsaturated polyester matrix can be reflected by the interlaminar shear strength (ILSS) and dynamic mechanical analysis value of the composites. The flexural properties of the composites showed a similar trend to ILSS. However, the fracture toughness revealed contrasting results. Water absorption induced a drastic loss of the mechanical properties of the composites albeit better retention of properties was observed in the case of heat-treated KF composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号