首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
ZnO nanowires (NWs) with different diameters were obtained by controlling the particles of ZnO sub-layer (SL) exploring hydrothermal method; the diameter of the epitaxial NWs could be tuned from 60 to 146 nm when using SL with a thickness of 70 nm. The thickness of the SL would influence the orientation of the NWs. The top agglomerate NWs could be formed on the SL with a thickness of 10 nm, and the NWs with better orientation were obtained using SL with a thickness of 70 nm. Well aligned ZnO NWs grew perpendicular to the completely stress released SL. The diameter of the NWs was also greatly influenced by the solution concentration; thus ultra fine (diameter∼11 nm) ZnO NWs were obtained through adjusting the solution concentration to 0.001 mol/L. Through our research, we also found that the growth rate of the NWs could also be influenced by the different polarity surface of the SL. In other words, the size of the ZnO NWs could be tuned exactly under optimal conditions.  相似文献   

2.
We report a novel method for producing aligned ZnO nanorods (ANR) on self-grown ZnO template in a single step process involving growth of ZnO by vapor transport, followed by quenching of growing ZnO flux in liquid nitrogen. In the present study Zn powder turns into ZnO sheet under oxygen flow at ∼900 °C and bottom surface of the sheet acts as template for the growth of ANR. It is revealed from XRD and EDAX analysis that the bottom of the sheet is Zn rich region and acts as self catalyst for the growth of ANR. The grown nanorods have length up to several tens of micrometers with diameters ranging from ∼100 to 150 nm. Microstructural analysis of ANR indicates the fractal like configuration. The field emission properties have been investigated for ANR with fractal geometry using the ANR on self-grown ZnO template as a cathode directly. The turn-on electric field required to draw current density of ∼1.0 μA/cm2 has been found to be ∼0.98 V/μm. The field enhancement factor based on Fowler-Nordheim (F-N) plot was found to be ∼7815 for ANR. The fractal geometry of ANR has been shown to be advantageous for achieving improved field emission features. The present investigations of synthesis involving formation of ANR over self-grown ZnO template, together with fractal configuration of the as-synthesized ANR, are first of their type.  相似文献   

3.
In this work, we report on the electrodeposition of ZnO thin films on n-Si (1 0 0) and glass substrates. The influence of the deposition time on the morphology of ZnO thin films was investigated. The ZnO thin films were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDS) and scanning electron microscopy (SEM). The results show a variation of ZnO texture from main (0 0 2) at 10 min to totally (1 0 1) at 15 min deposition time. The photoluminescence (PL) studies show that both UV (∼382 nm) and blue (∼432 nm) luminescences are the main emissions for the electrodeposited ZnO films. In addition, the film grown at 15 min indicates an evident decrease of the yellow-green (∼520 nm) emission band comparing with that of 10 min. Finally, transmittance spectra show a high transmission value up to 85% in the visible wavelength range. Such results would be very interesting for solar cells applications.  相似文献   

4.
Heteroepitaxial ZnO epilayers were grown on Si(1 1 1) substrates using a vertical geometry atmospheric pressure metal organic chemical vapor deposition (AP-MOCVD) system. The growth temperature was varied from 550 °C to 650 °C in steps of 25 °C. The ZnO growth rate and surface morphology were strong functions of the growth temperature and ranged from ∼0.16 μm/h to 1.36 μm/h. The surface morphology of the ZnO films changed from granular to sharp tips as the growth temperature increased. The effect of buffer thickness was also examined, and was found to have a strong effect on the optical properties of the ZnO. An optimized growth condition for ZnO epilayers was found at 625 °C, producing a FWHM in the room temperature photoluminescence (PL) spectrum of 4.5 nm and a preferred growth orientation along the (0 0 2) direction.Transmission electron microscopy images and selected area diffraction patterns showed excellent crystalline quality of both the buffer and ZnO overlayer. When non-optimized growth temperatures were employed, post-growth annealing was found to greatly enhance the ratio of band-edge to deep level emission.  相似文献   

5.
Multipod ZnO whiskers were synthesized successfully by two steps: pulsed laser deposition (PLD) and thermal evaporation process. First, a thin layer of Zn films were deposited on Si(1 1 1) substrates by PLD. Then the whiskers grew on Zn-coated Si(1 1 1) substrate by the simple thermal evaporation oxidation of the metallic zinc powder at 900 °C in the air without any catalysts or additives. The pre-deposited Zn films by PLD on the substrate can promote the growth of ZnO multipod whiskers effectively. The as-synthesized ZnO whiskers were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The results revealed that the whiskers are highly crystalline with the wurtzite hexagonal structure. Room temperature photoluminescence (PL) spectrum of the whiskers shows a UV emission peak at ∼393 nm and a broad green emission peak at ∼517 nm, which was assigned to the near band-edge emission and the deep-level emission, respectively.  相似文献   

6.
Zinc oxide (ZnO) and lead sulphide (PbS) nanoparticles separately synthesized by a precipitation method were combined by an ex situ route to prepare ZnO-PbS nanocomposites with different molar ratios of ZnO and PbS. The structure and morphology of the ZnO, PbS and ZnO-PbS samples were analyzed with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). A UV-vis spectrophotometer was used to collect the absorption and 325 nm He-Cd and 488 nm Ar lasers were used to collect the photoluminescence data from the samples. ZnO nanoparticles showed a broad and stable emission peak at ∼570 nm, while a strongly quantum confined emission from PbS nanoparticles was detected at ∼1344-1486 nm. The ZnO-PbS nanocomposites exhibited dual emission in the visible and near-infrared (NIR) regions that is associated with defects and recombination of excitonic centres in the ZnO and PbS nanoparticles, respectively. The PL intensity of the visible emission from the ZnO-PbS nanocomposite was shown to increase when the ZnO to PbS molar ratio was 5:1 and the emission was almost quenched at molar ratios of 1:1 and 1:5. For different molar ratios of ZnO to PbS, the PL intensity of the NIR emission from the ZnO-PbS nanocomposites was more intense than that of PbS nanoparticles.  相似文献   

7.
Well-aligned single crystalline zinc oxide (ZnO) nanorods were successfully grown, by hydrothermal synthesis at a low temperature, on flexible polyethylene terephthalate (PET) substrates with a seed layer. Photoluminescence (PL), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) measurements were used to analyze the optical and structural properties of ZnO nanorods grown for various durations from 0.5 h to 10 h. Regular and well-aligned ZnO nanorods with diameters ranging from 62 nm to 127 nm and lengths from 0.3 μm to 1.65 μm were formed after almost 5 h of growth. The growth rate of ZnO grown on PET substrates is lower than that grown on Si (1 0 0) substrates. Enlarged TEM images show that the tips of the ZnO nanorods grown for 6 h have a round shape, whereas the tips grown for 10 h are sharpened. The crystal properties of ZnO nanorods can be tuned by using the growth duration as a growth condition. The XRD and PL results indicate that the structural and optical properties of the ZnO nanorods are most improved after 5 h and 6 h of growth, respectively.  相似文献   

8.
ZnO nanowire (NW) arrays are assembled on the Al-doped ZnO (AZO) seed layer by a hydrothermal process. Effects of the temperature and growth time of the hydrothermal process on morphological and photoluminescence properties of the as-assembled ZnO NW arrays are characterized and studied. Results indicate that the length and diameter of the ZnO NWs increase with a lengthening of the growth time at 80 °C and the hydrothermal temperature has a significant effect on the growth rate and the photoluminescence properties of the ZnO NW arrays. The patterned AZO seed layer is fabricated on a silicon substrate by combining a sol-gel process with an electron-beam lithography process, as well as a surface fluorination technique, and then the ZnO NW arrays are selectively grown on those patterned regions of the AZO seed layer by the hydrothermal process. Room-temperature photoluminescence spectra of the patterned ZnO NW arrays shows that only a strong UV emission at about 380 nm is observed, which implies that few crystal defects exist inside the as-grown ZnO NW arrays.  相似文献   

9.
In the present paper, well-dispersed ZnO nano-, submicro- and microrods with hexagonal structure were synthesized by a simple low temperature hydrothermal process from zinc nitrate hexahydrate without using any additional surfactant, organic solvent or catalytic agent. The phase and structural analysis were carried out by X-ray diffraction (XRD), the morphological analysis was carried out by field emission scanning electron microscopy (FESEM) and the optical property was characterized by room-temperature photoluminescence (PL) spectroscopy. The results revealed the high crystal quality of ZnO powder with hexagonal (wurtzite-type) crystal structure and the formation of well-dispersed ZnO nano-, submicro- and microrods with diameters of about 50, 200 and 500 nm, and lengths of 300 nm, 1 μm and 2 μm, respectively, on a large-scale just using the different temperatures. Room-temperature PL spectrum from the ZnO nanorods reveals a strong UV emission peak at about 360 nm and no green emission band at ∼530 nm. The strong UV photoluminescence indicates the good crystallization quality of the ZnO nanorods. Room-temperature PL spectra from the ZnO submicro- and microrods reveal a weak UV emission peak at ∼400 nm and a very strong visible green emission at 530 nm, that is ascribed to the transition between VoZni and valence band.  相似文献   

10.
Nitrogen and erbium co-doped of ZnO nanowires (NWs) are fabricated by ion implantation and subsequent annealing in air. The incorporation of Er3+ and N+ ions is verified by energy dispersive X-ray spectroscopy (EDS) and Raman spectra. The samples exhibit upconversion photoluminescence around ∼550 nm and ∼660 nm under an excitation at 980 nm. It is discovered that the N-doped can drastically increase the upconversion photoluminescence intensity by modifying the local structure around Er3+ in ZnO matrix. The enhancement of the PL intensity by the N-doped is caused by the formation of ErO6−xNx octahedron complexes. With the increase of the annealing temperature (Ta), the Er3+ ions diffuse towards the surface of the NWs, which benefits the red emission and evokes the variation of intensity ratio owing to the existence of some organic groups.  相似文献   

11.
The synthesis of nanocrystalline zinc oxide (ZnO) in the presence of poly-vinylpyrrolidone (PVP) as capping agent through hydrothermal process, and their structural and optical properties were reported. PVP modified ZnO nanorods grown hydrothermally involve a heterogeneous chemical reaction in the presence of water as a solvent medium and reaction temperature of 100 °C for 7 h in a hot air oven and calcined in air at 500 °C for 3 h. Crystal structure, phase purity and average crystallite size of ZnO were studied by powder X-ray diffraction (PXRD). The strain associated with the as-prepared samples due to lattice deformation was estimated by Williamson–Hall (W–H) analysis. Structural morphology was investigated using scanning electron microscopy (SEM), which showed the formation of nanorods with PVP capping. The growth mechanism of ZnO nanorods and its capping by poly-vinylpyrrolidone are briefly discussed through FT-IR adsorption spectra. The optical behavior of the samples was analyzed through photoluminescence (PL) spectroscopy with an emission spectra in visible region ∼418 nm indicate the applicability of using it as a transport material in solar cells.  相似文献   

12.
Cu-doped ZnO films with hexagonal wurtzite structure were deposited on silicon (1 1 1) substrates by radio frequency (RF) sputtering technique. An ultraviolet (UV) peak at ∼380 nm and a blue band centered at ∼430 nm were observed in the room temperature photoluminescent (PL) spectra. The UV emission peak was from the exciton transition. The blue emission band was assigned to the Zn interstitial (Zni) and Zn vacancy (VZn) level transition. A strong blue peak (∼435 nm) was observed in the PL spectra when the αCu (the area ratio of Cu-chips to the Zn target) was 1.5% at 100 W, and ZnO films had c-axis preferred orientation and smaller lattice mismatch. The influence of αCu and the sputtering power on the blue band was investigated.  相似文献   

13.
Not only vertically aligned ZnO nanowires but also horizontally aligned ZnO nanowires have been successfully grown on the annealed (0 0 0 1) c-cut and (1 1 2 0) a-cut sapphire substrates, respectively using catalyst-free nanoparticle-assisted pulsed-laser ablation deposition (NAPLD). The as-synthesized ZnO nanowires exhibit an ultraviolet emission at around 390 nm and the absent green emission under room temperature. The single ZnO nanowire was collected in the electrode gap by dielectrophoresis (DEP). Under the optical pumping, the single ZnO nanowire exhibited UV emission at around 390 nm with several sharp peaks whose energy spacings are almost constant, which greatly differs from the broad UV emission of the film with many nanowires, suggesting ZnO nanowires as candidates for laser media. The single ZnO nanowire showed polarized photoluminescence (PL). The as-synthesized ZnO nanowires could find many interesting applications in short-wavelength light-emitting diode (LED), laser diode and gas sensor.  相似文献   

14.
A simple growth route towards ZnO thin films and nanorods   总被引:1,自引:0,他引:1  
Highly orientated ZnO thin films and the self-organized ZnO nanorods can be easily prepared by a simple chemical vapor deposition method using zinc acetate as a source material at the growth temperature of 180 and 320 °C, respectively. The ZnO thin films deposited on Si (100) substrate have good crystallite quality with the thickness of 490 nm after annealing in oxygen at 800 °C. The ZnO nanorods grown along the [0001] direction have average diameter of 40 nm with length up to 700 nm. The growth mechanism for ZnO nanorods can be explained by a vapor-solid (VS) mechanism. Photoluminescence (PL) properties of ZnO thin films and self-organized nanorods were investigated. The luminescence mechanism for green band emission was attributed to oxygen vacancies and the surface states related to oxygen vacancy played a significant role in PL spectra of ZnO nanorods.  相似文献   

15.
Thin films of lead sulfide (PbS) nanoparticles embedded in an amorphous silica (SiO2) host were grown on Si(1 0 0) substrates at different temperatures by the pulsed laser deposition (PLD) technique. Surface morphology and photoluminescence (PL) properties of samples were analyzed with scanning electron microscopy (SEM) and a 458 nm Ar+ laser, respectively. The PL data show a blue-shift from the normal emission at ∼3200 nm in PbS bulk to ∼560-700 nm in nanoparticulate PbS powders and thin films. Furthermore, the PL emission of the films was red-shifted from that of the powders at ∼560 to ∼660 nm. The blue-shifting of the emission wavelengths from 3200 to ∼560-700 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the red-shift between powders and thin-film PbS nanoparticles is speculated to be due to an increase in the defect concentration. The red-shift increased slightly with an increase in deposition temperature, which suggests that there has been a relative growth in particle sizes during the PLD of the films at higher temperatures. Generally, the PL emission of the powders was more intense than that of the films, although the intensity of some of the films was improved marginally by post-deposition annealing at 400 °C. This paper compares the PL properties of powder and pulsed laser-deposited thin films of PbS nanoparticles and the effects of deposition temperatures.  相似文献   

16.
Bright blue emission from Te-doped ZnS nanowires   总被引:1,自引:0,他引:1  
Optical properties of Te-doped ZnS (ZnS:Te) nanowires (NWs) synthesized by a thermal chemical vapor deposition method were investigated by cathodeluminescence and photoluminescence (PL) measurements. ZnS:Te NWs exhibit the blue emission with the maximum peak at ∼440 nm at room temperature. We calculated Te-induced states on the valence band and conduction band in ZnS bulk crystal compared with PL peaks of ZnS:Te NWs. Temperature-dependent PL indicated that the activation energy of electron confined in ZnS:Te NWs is 85 meV. Blue light-emitting dot matrix displays were also fabricated using ZnS:Te NWs. This result suggested that ZnS:Te NWs could be applied as a blue-color-emitter on display devices.  相似文献   

17.
ZnO nanowires were grown on AlN thin film deposited on the glass substrates using a physical vapor deposition method in a conventional tube furnace without introducing any catalysts. The temperature of the substrates was maintained between 500 and 600 °C during the growth process. The typical average diameters of the obtained nanowires on substrate at 600 and 500 °C were about 57 and 22 nm respectively with several micrometers in length. X-ray diffraction and Auger spectroscopy results showed Al diffused from AlN thin film into the ZnO nanowires for the sample grown at 600 °C. Photoluminescence of the nanowires exhibits appearance of two emission bands, one related to ultraviolet emission with a strong peak at 380-382 nm, and the other related to deep level emission with a weak peak at 503-505 nm. The ultraviolet peak of the nanowires grown at 500 °C was blue shifted by 2 nm compared to those grown at 600 °C. This shift could be attributed to surface effect.  相似文献   

18.
Brush-shaped ZnO particles were synthesized by controlling the growth time in the direct melt oxidation process of Al-Zn mixture in air at atmospheric pressure. Particles with two kinds of structures were formed. One was consisted of nanowires grown along [0 0 0 1] direction at the six corners and the center of (0 0 0 1) basal plane on hexagonal ZnO microrod. The other was constructed by nanobelts between the corner-nanowires as well as nanowires at the corners on ZnO microrod. The structural configuration that the nanowires and the nanobelts have a well coherent orientation alignment with the base microrod implies that the brush-shaped ZnO is single crystal. Room temperature PL spectrum of the brush-shaped ZnO particles displayed predominant green emission with a wavelength of 510 nm.  相似文献   

19.
Two types of novel Mg-doped pencil-shaped ZnO microprisms had been successfully synthesized on Mg(NO3)2-coated Si (1 1 1) substrates by thermal chemical vapor deposition method. The as-prepared ZnO prisms were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission transmission electron microscope (FETEM), selected area electron diffraction (SAED), and photoluminescence (PL) spectroscopy. The straight microprisms are made up of hexagonal pyramids tips and hexagonal prisms bodies. Both of the structures are perfect single crystal and have grown along the [0 0 0 1] direction preferentially. Photoluminescence reveals a red-shift at around 387 nm which is induced by Mg doping and a green light emission peak at around 511 nm. The pencil-shaped ZnO microstructure can provide an improvement in novel ultraviolet light-emitting devices. In addition, the growth mechanism of the special ZnO microprisms is discussed briefly.  相似文献   

20.
The study is dedicated to some aspects of the controlled heteroepitaxial growth of nanoscaled ZnO structures and an investigation of their general and dimension mediated properties. ZnO nanostructures were synthesized by optimized MOCVD process via two growth approaches: (i) catalyst free self-organized growth of ZnO on Si substrates and (ii) ZnO heteroepitaxy on p-type hexagonal 4H-SiC substrates. The SiC substrate was prepared by sublimation epitaxy and served as a template for the ZnO epitaxial growth. The epitaxial growth of n-ZnO on p-SiC resulted in a regular matrix of well-faceted hexagonally shaped ZnO single crystals. The achievement of ZnO integration with Si encompasses controlled growth of vertically oriented nanosized ZnO pillars. The grown structures were characterized by transmission electron microscopy and microphotoluminescence. Low concentration of native defects due to a stoichiometry balance, advanced optical emission, (excitonic type near-band-edge emission and negligible defect related luminescence) and continuous interfaces (epitaxial relationship ZnO[0 0 0 1]/SiC[0 0 0 1]) are evidenced. The ZnO nanopillars were further probed as field emitters: the grown structures exhibits advanced field emission properties, which are explained in term of dimensionality and spatial uniformity of the nanopillars. The present results contribute to understanding and resolving growth and device related issues of ZnO as a functional nanostructured material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号