首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study is to preliminarily explore the effect of surface chemistry modification of Ti6Al4V with a fluorine-contained copolymer thin film on the cellular behavior of osteoblasts. A fluorine-contained random copolymer thin film was fabricated on Ti6Al4V substrate, and then characterized by X-ray photoelectron spectroscopy (XPS), contact angle meter and surface profiler. The results showed that the surface modification of Ti6Al4V alloy could simultaneously transform the surface chemical constitution and reduce the surface energy evidently. However, the surface morphology and roughness of the Ti6Al4V substrate were hardly changed after the modification. By immersion process with simulated body fluid (SBF) and then by in vitro cytotoxicity test with MC3T3-E1 osteoblasts, the fluorine-contained copolymer thin film exhibited desirable stability and admirable cytocompatibility. In conclusion, the fluorine-contained copolymer thin film could be easily applied in modifying various solid surfaces, and the as-fabricated film also has potential applications in biomedical field.  相似文献   

2.
In this paper, Cu/liquid microcapsule composite coating was prepared by electroplating method. And a variable hydrophobic surface was obtained due to the slow release of microcapsules and the rough surface. The hydrophobic property and corrosion resistance of the composite was investigated by means of water contact angle instrument and electrochemical technique, respectively. The results suggest that the contact angle (CA) of composite increases gradually with the increasing storing time, and the stable super-hydrophobic property was exhibited after storing in air for 15 days. Meanwhile, the excellent corrosion resistance was displayed, which could be ascribed to the good stability of hydrophobic film on composite surface.  相似文献   

3.
利用脉冲高能量密度等离子体技术在室温条件下在45#钢基材表面沉积了高硬度耐腐蚀(Ti, Al)N薄膜. 利用扫描电子显微镜、X射线衍射、X射线光电子能谱、俄歇电子能谱分析了薄膜的显微组织.利用纳米压痕仪测试了薄膜的纳米硬度.测试了薄膜在05mol/L H2SO4水溶液中的耐蚀性. 测试结果表明:薄膜主要组成相为(Ti, Al)N,同时含有少量的AlN,薄膜的纳米硬度高达26 GPa,薄膜具有良好的耐蚀性,与1Cr18Ni9Ti奥氏体不锈钢相比,耐蚀性提高了一个数量级. 关键词: 脉冲高能量密度等离子体 薄膜 纳米硬度 耐蚀性  相似文献   

4.
Haibing Zhang  Yu Zuo   《Applied Surface Science》2008,254(16):4930-4935
A phosphate post-treatment process for Ce conversion film on aluminum was studied. SEM (scanning electronic microscope), XPS (X-ray photoelectron spectroscopy) and electrochemical measurements were used to characterize the properties of the films. After the post-treatment the micro-cracks on the film surface obviously diminished, and corrosion resistance of the conversion film in NaCl solution increased. The conversion film, without post-treatment, was mainly composed of hydrated cerium oxides, and the dehydration of the film may cause cracking of the films. After phosphate treatment, stable cerium phosphate CePO4 was formed on the surface, and the content of crystal water decreased greatly, leading to improvement of the film performance with less micro-cracks.  相似文献   

5.
C.K. Lee 《Applied Surface Science》2008,254(13):4111-4117
A diamond film was deposited on silicon substrate using hot filament chemical vapor deposition (HFCVD), and H2 and O2 gases were added to the deposition process for comparison. This work evaluates how adding H2 and O2 affects the corrosion and wear-corrosion resistance characteristics of diamond films deposited on silicon substrate. The type of atomic bonding, structure, and surface morphologies of various diamond films were analyzed by Raman spectrometry, X-ray diffraction (XRD) and atomic force microscopy (AFM). Additionally, the mechanical characteristics of diamond films were studied using a precision nano-indentation test instrument. The corrosion and wear-corrosion resistance of diamond films were studied in 1 M H2SO4 + 1 M NaCl solution by electrochemical polarization. The experimental results show that the diamond film with added H2 had a denser surface and a more obvious diamond phase with sp3 bonding than the as-deposited HFCVD diamond film, effectively increasing the hardness, improving the surface structure and thereby improving corrosion and wear-corrosion resistance properties. However, the diamond film with added O2 had more sp2 and fewer sp3 bonds than the as-deposited HFCVD diamond film, corresponding to reduced corrosion and wear-corrosion resistance.  相似文献   

6.
In this paper, we reported the possibility to image non-conducting P(VDF-TrFE) copolymer films by STM. The films had the thickness of ∼25.0 nm and were spin-coated onto Au or graphite substrates. For films deposited on Au substrates, STM images showed grain structures of ∼100 nm, much larger than the grains of bare Au substrate. With increased scan rate, the film surface was damaged by STM tip and extreme protrusions and holes were observed. For films deposited on graphite substrates, we only obtained an image of very flat plane and could not observe the topography of the film surface. It seemed that the tip had pierced through the uppermost P(VDF-TrFE) layers and only imaged the layers nearest to the substrate. Asymmetrical current-voltage curves were observed from copolymer films deposited on HOPG. Experimental results were discussed.  相似文献   

7.
We present a theoretical analysis of the self-assembly of diblock copolymers on surfaces grafted with random copolymers. Our results demonstrate that the surface energies of homopolymeric components on grafted surfaces differ from the corresponding values for self-assembled morphologies. Moreover, grafted random copolymers are shown to adapt their conformations in response to the morphology of the overlaying block copolymer film to create chemical inhomogeneities which modulate the interfacial interactions. Consequently, the surface energy differences between the different components on the grafted substrate do not serve as a useful measure to predict the stability of self-assembly of the diblock copolymer film.  相似文献   

8.
The corrosion behavior of as-cast fully amorphous, structural relaxed amorphous and crystallized Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glasses (BMGs) in NaCl, HCl and NaOH solutions was investigated by electrochemical polarization and immersion methods. X-ray photoelectron spectroscopy measurements was used to analyze the changes of the elements on the alloy surface before and after immersion in various solutions. The corrosion resistance of the Fe65.5Cr4Mo4Ga4P12C5B5.5 BMG was better than its structural r...  相似文献   

9.
Plasma-nitriding is used to improve the wear resistance and corrosion resistance of plastic mold steels by modifying the surface layers of these steels. In this study, a precipitation hardenable plastic mold steel (NAK80) was plasma-nitrided at 470, 500, and 530 °C for 4, 8, and 12 h under 25% N2 + 75% H2 atmosphere in an industrial nitriding facility. The microstructures of the base material and nitrided layers as well as the core hardness were examined, and various phases present were determined by X-ray diffraction. The corrosion behaviors were evaluated using anodic polarization tests and salt fog spray tests in 3.5% NaCl solution.The results had shown that plasma-nitriding does not cause the core to soften by overaging. Nitriding and aging could be achieved simultaneously in the same treatment cycle. Plasma-nitriding of NAK80 mold steel produced a nitrided layer composed of an outer compound layer constituting a mixture of ?-nitride and γ′-nitride and an adjacent nitrogen diffusion layer on the steel surface. The amount of ?-nitride and total nitrides increased with an increase in nitriding temperature and nitriding time. Corrosion study revealed that plasma-nitriding significantly improved the corrosion resistance in terms of corrosion potential, corrosion and pitting current density, and corrosion rate. This improvement was found to be directly related to the increase in the amount of ?-nitride at the surface, indicating the amount of ?-nitride controlling the corrosion resistance.  相似文献   

10.
With the increase of magnetic storage density, the thickness of the protective diamond like carbon (DLC) film on the surfaces of head and disk is required as thin as possible. In this paper, the structure, mechanical properties and corrosion and oxidation resistance of ultra-thin DLC films are investigated. The ultra-thin DLC films were deposited by using filtered cathodic vacuum arc (FCVA) technique. The exact thickness of the ultra-thin DLC film was determined by high resolution transmission electron microscope (HRTEM). Raman analysis indicates that the ultra-thin DLC film presents ta-C structure with high sp3 fraction. In the wear test, a diamond tip was used to simulate a single-asperity contact with the film surface and the wear marks were produced on the film surface. The wear depths decrease with film thickness increasing. If the film thickness was 1.4 nm or above, the wear depth was much lower than that of Si substrate. This indicates that the ultra-thin DLC film with thickness of 1.4 nm shows excellent wear resistance. Corrosion tests in water and oxidation tests in air were carried out to investigate the diffusion barrier effect of the ultra-thin DLC films. The results show that the DLC film with thickness of 1.4 nm provides adequate coverage on the substrate and has good corrosion and oxidation resistance.  相似文献   

11.
Anodization of sputtered NiTi thin films has been studied in 1 M acetic acid at 23 °C for different voltages from 2 to 10 V. The morphology and cross-sectional structures of the untreated and anodized surfaces were investigated by field emission scanning electron microscopy (FE-SEM). The results show that increasing anodization voltage leads to film surface roughening and unevenness. It can be seen that the thickness of the anodized layer formed on the NiTi surface is in the nanometer range. The corrosion resistance of anodized thin films was studied by potentiodynamic scan (PDS) and impedance spectroscopy (EIS) techniques in Hank's solution at 310 K (37 °C). It was shown that the corrosion resistance of the anodized film surface improved with increasing voltage to 6 V. Anodization of austenitic sputtered NiTi thin films has also been studied, in the same anodizing conditions, at 4 V. Comparison of anodized sputtered NiTi thin films with anodized austenitic shape memory films illustrate that the former are more corrosion resistant than the latter after 1 h immersion in Hank's solution, which is attributed to the higher grain boundary density to quickly form a stable and protective passive ?lm.  相似文献   

12.
Titanium films of 80 nm thickness were deposited on stainless steel type 304, and they were post-annealed under flow of oxygen at different temperatures. The prepared samples were corrosion tested in 1.0 M H2SO4 solution using potentiodynamic and galvanometric polarization technique. The variation of corrosion resistance of these samples showed that the optimum annealing temperature is 473 K. The reduction of corrosion resistance of the sample with increasing the temperature above 473 K is attributed to the phenomena which are confirmed by AFM results: (a) increase of surface roughness, and (b) formation of larger grains with large grooves between them on the film surface. Hence larger effective surfaces for chemical reactions are provided. The films’ crystallographic and morphological structures were analysed using XRD and AFM, respectively before corrosion test and SEM after corrosion test. It is observed that the crystallographic structure of the film goes through a sudden change at 943 K annealing temperature and three phases of titanium oxide (i.e., rutile, anatase and brookite) are formed.  相似文献   

13.
Mechanical properties and corrosion resistance of zirconium make this material suitable for biomedical implants. Its good in vivo performance is mainly due to the presence of a protective oxide layer that minimizes corrosion rate, diminishes the amount of metallic ions released to the biological media and facilitates the osseointegration process.Since the implant surface is the region in contact with living tissues, the characteristics of the surface film are of great interest. Surface modification is a route to enhance both biocompatibility and corrosion resistance of permanent implant materials. Anodizing is presented as an interesting process to modify metal surfaces with good reproducibility and independence of the geometry.In this work the surface of zirconium before and after anodizing in 1 mol/L phosphoric acid solution at a fixed potential between 3 and 30 V, was characterized by means of several surface techniques.It was found that during anodization the surface oxide grows with an inhomogeneous coverage on zirconium surface, modifying the topography. The incorporation of P from the electrolyte to the surface oxide during the anodizing process changes the surface chemistry. After 30 days of immersion in Simulated Body Fluid (SBF) solution, Ca-P rich compounds were present on anodized zirconium.  相似文献   

14.
Potentiostatically anodized oxide films on the surface of commercial pure titanium (cp-Ti) formed in sulfuric (0.5 M H2SO4) and in phosphoric (1.4 M H3PO4) acid solutions under variables anodizing voltages were investigated and compared with the native oxide film. Potentiodynamic polarization and electrochemical impedance spectroscopy, EIS, were used to predicate the different in corrosion behavior of the oxide film samples. Scanning electron microscope, SEM, and electron diffraction X-ray analysis, EDX, were used to investigate the difference in the morphology between different types of oxide films. The electrochemical characteristics were examined in phosphate saline buffer solution, PSB (pH 7.4) at 25 °C. Results have been shown that the nature of the native oxide film is thin and amorphous, while the process of anodization of Ti in both acid solutions plays an important role in changing the properties of passive oxide films. Significant increase in the corrosion resistance of the anodized surface film was recorded after 3 h of electrode immersion in PSB. On the other side, the coverage (θ) of film formed on cp-Ti was differed by changing the anodized acid solution. Impedance results showed that both the native film and anodized film formed on cp-Ti consist of two layers. The resistance of the anodized film has reached to the highest value by anodization of cp-Ti in H3PO4 and the inner layer in the anodized film formed in both acid solutions is also porous.  相似文献   

15.
The purpose of this study has been to advance in knowledge of the chemical composition, structure and thickness of the thin native oxide film formed spontaneously in contact with the laboratory atmosphere on the surface of freshly polished commercial AZ31 and AZ61 alloys with a view to furthering the understanding of protection mechanisms. For comparative purposes, and to more fully describe the behaviour of the native oxide film, the external oxide films formed as a result of the manufacturing process (as-received condition) have been characterised. The technique applied in this research to study the thin oxide films (thickness of just a few nanometres) present on the surface of the alloys has basically been XPS (X-ray photoelectron spectroscopy) in combination with ion sputtering. Corrosion properties of the alloys were studied in 0.6 M NaCl by measuring charge transfer resistance values, which are deduced from EIS (electrochemical impedance spectroscopy) measurements after 1 h of exposure. Alloy AZ61 generally showed better corrosion resistance than AZ31, and the freshly polished alloys showed better corrosion resistance than the alloys in as-received condition. This is attributed to a combination of (1) higher thickness of the native oxide film on the AZ61 alloy and (2) greater uniformity of the oxide film in the polished condition. The formation of an additional oxide layer composed by a mixture of spinel (MgAl2O4) and MgO seems to diminish the protective properties of the passive layer on the surface of the alloys in as-received condition.  相似文献   

16.
Magnesium-based biomaterials have been proposed as potential candidates for biodegradable implant materials, such as bone screws, bone plates, intraluminal stents and so on. However, the poor corrosion resistance inhibits their applications in surgery. They collapse before the injured tissues are healed. In this paper, Mg(OH)2 nonstructural film was synthesized on the substrate of AZ31 magnesium alloy by hydrothermal method with NaOH solution as mineralizer to reduce the corrosion rate of magnesium-based materials. The obtained films were characterized by XRD, SEM, and XPS. The results showed that a Mg(OH)2 film with nanostructure surface can be synthesized by hydrothermal method. It was observed that the thickness of film increased with the holding time. Corrosion rates of the films were studied by immersing the samples in Hank's solution (37 °C). Surface deposits of samples with films soaked in Hank's solution for 31 days were investigated by XRD, SEM, EDS, XPS, and FTIR. It verified that the corrosion rate of the magnesium alloy with grown film was slowed down in the Hank's solution and the behavior of corrosion was inhibited effectively. Amorphous calcium apatite precursor was observed to deposit on the surface of the film during corrosion experiments in Hank's solution. And the tape test revealed a strong adhesion between the film and the substrate.  相似文献   

17.
K.T. Liu 《Applied Surface Science》2007,253(12):5268-5273
An electrochemical study for the evaluation of corrosion behavior using potentiodynamic and Tafel techniques was conducted in 0.9% NaCl solution on Ni-Ti and Ni-Ti-Al shape memory thin films. Atomic force microscopy (AFM) and electron probe microanalyzer (EPMA) were applied to observe morphology of the surface film and elemental distribution, respectively, prior to and after immersion in 0.9% NaCl solution. The concentration of dissolved Ni from Ni-Ti-Al thin films in the electrolyte, measured with inductively coupled plasma atomic emission spectrometer (ICP-AES), was significantly lower after immersion for 7 days, as compared to Ni-Ti thin film. This demonstrated that a better corrosion resistance and lower corrosion current density were revealed for Ni-Ti-Al thin films than that for Ni-Ti thin film. The improved corrosion performance of Ni-Ti-Al thin films would be potentially beneficial for related biological applications. This was attributed to the introduction of aluminum after exposure to an aqueous environment.  相似文献   

18.
A single phase Cu-Zn-Bi film is fabricated on the steel wire by electrodeposition. Bi addition (∼1 wt.%) greatly increases the corrosion resistance of brass (Cu−36 wt.% Zn) film in a 0.05 M K2SO4 solution as shown by potentiodynamic polarization and electrochemical impendence spectroscopy (EIS) experiments. It is proposed that the main reason for the improvement in the corrosion resistance by the Bi addition is that it greatly increased the crack resistance, which thus prevents crack-induced galvanic corrosion occurring between the brass film and the steel substrate.  相似文献   

19.
《Applied Surface Science》2002,185(3-4):248-254
Thin films of Y2O3 were deposited on the surface of a zinalco alloy (Zn–22Al–2Cu) in order to modify the surface and increase the corrosion resistance. By means of ion sputtering and surface analysis using Auger electron spectroscopy, in-depth relative elemental intensity profiles were obtained. The growth mechanism of the surface oxides layer is modified by the deposited yttrium oxide film. On samples without film, corrosion progresses mainly at the surface as indicated by the zinc excess, while on samples with film, the growth of the oxides layer occurs at inner points of the film where migrating anions and cations are allowed to find each other. The growth of the corrosion products layer is about nine times smaller in samples with a film of 1600 Å of Y2O3 with respect to samples without a film. Migration of aluminum particles is higher than that of zinc particles, producing a surface highly enriched in aluminum.  相似文献   

20.
In this study, the corrosion behaviours of mild steel (MS) samples coated with single epoxy polyamine (MS/E), epoxy polyamine top-coated polypyrrole (MS/PPy/E) and polyaniline (MS/PANI/E) were investigated in 3.5% NaCl solution of pH 8. For this purpose, electrochemical impedance spectroscopy (EIS) and polarisation resistance measurements were utilized when the centres of the electrode surfaces were scratched. It was found that the PPy film reduced the corrosion protection efficiency of the epoxy coating when it was used as the primary film under the epoxy layer. The primary PANI coating was shown to improve significantly the protection efficiency of the epoxy coating against mild steel corrosion. This was related to its healing effect on surface passivation against attack by a corrosive environment along a defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号