首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hawthorn seed (HS), an important by-product of the Hawthorn industry, is rich in potentially health-promoting flavonoids compounds. In this paper, the ultrasound-assisted extraction (UAE) of FC from HS was investigated. Important variables and their levels were obtained using Plackett-Burman (PB) design and Box-Behnken (BB) design. A mathematical model was developed to show the effects of each variable and their combinatorial interactions on extraction yield of FC. A high coefficient of determination (R2 = 91.26%) indicated good agreement between the experimental and predicted values of FC yield. The optimum levels of these significant parameters were determined using response surface methodology (RSM), which revealed these as follows: ultrasound temperature 65 °C, ultrasonic time 37 min, extraction temperature 91 °C, extraction time 1.5 h, solid-liquid ratio of 1:18, and 72% ethanol. Under the optimum condition, the UAE rate of FC was up to 91.7%, and the yield of FC was 16.45 ± 0.02 mg/g (P < 0.05) that was 1.32-fold the yield of conventional reflux extraction (CRE).  相似文献   

2.
3.
An optimized ultrasound-assisted extractive method was developed to obtain a polyphenol-enriched extract from the aerial parts of Thymus comosus Heuff. ex Griseb. et Schenk. Optimization process was conducted based on Design of Experiment (DoE) principles, determining the influence of three independent variables (time, ultrasound amplitude, ethanol concentration) on the total phenolic content of the extract (dependent variable). Additionally, the phenolic composition of the extract was characterized through UHPLC-HRMS, revealing beside the most abundant flavonoid-type compounds the presence of salvianolic acids C, D and L in high amounts. Phytochemical profile of the extract was correlated with its antioxidant activity (tested through five complementary assays) and enzyme-inhibitory potential, showing important antiglucosidase and anticholinesterase effects. Overall, it was concluded that the developed method is suitable for obtaining a good recovery of both phenolic and non-phenolic compounds from Thymus comosus aerial parts, and their presence in the optimized extract is responsible for its pharmacological potential.  相似文献   

4.
岳明  张红国  刘丹敏  张久兴 《中国物理 B》2015,24(1):17505-017505
The interdependences of preparation conditions,magnetic and crystal structures,and magnetocaloric effects(MCE)of the Mn Fe PGe-based compounds are reviewed.Based upon those findings,a new method for the evaluation of the MCE in these compounds,based on differential scanning calorimetry(DSC),is proposed.The Mn Fe PGe-based compounds are a group of magnetic refrigerants with giant magnetocaloric effect(GMCE),and as such,have drawn tremendous attention,especially due to their many advantages for practical applications.Structural evolution and phase transformation in the compounds as functions of temperature,pressure,and magnetic field are reported.Influences of preparation conditions upon the homogeneity of the compounds’chemical composition and microstructure,both of which play a key role in the MCE and thermal hysteresis of the compounds,are introduced.Lastly,the origin of the"virgin effect"in the Mn Fe PGebased compounds is discussed.  相似文献   

5.
Growing fruit and vegetable processing industries generates a huge amount of by-products in the form of seed, skin, pomace, and rind containing a substantial quantity of bioactive compounds such as polysaccharides, polyphenols, carotenoids, and dietary fiber. These processing wastes are considered to be of negligible value compared to the processed fruit or vegetable due to lack of sustainable extraction technique. Conventional extraction has certain limitations in terms of time, energy, and solvent requirements. Ultrasound assisted extraction (UAE) can extract bioactive components in very less time, at low temperature, with lesser energy and solvent requirement. UAE as a non-thermal extraction technique is better equipped to retain the functionality of the bioactive compounds. However, the variables associated with UAE such as frequency, power, duty cycle, temperature, time, solvent type, liquid-solid ratio needs to be understood and optimized for each by-product. This article provides a review of mechanism, concept, factor affecting extraction of bioactive compounds with particular focus on fruit and vegetable by-products.  相似文献   

6.
In this study, a three-layer feed-forward back propagation network with Levenberg-Marquardt (LM) learning algorithm was applied to predict adsorption of phenol onto activated carbon (AC). Batch experiments were carried out to obtain experimental data. The neural network was trained considering the amount of adsorbent, initial concentration of phenol, temperature, contact time and pH as input parameters and the final concentration of phenol as a desired parameter. Different transfer functions for hidden and output layers and different number of neurons in a hidden layer were tested to optimize the network structure. An empirical equation for final concentration of phenol was developed by using the weights of optimized network. Accuracy of the developed ANN model was also measured using statistical parameters, such as mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE) and correlation coefficient (R2). Results showed that MAE, MSE, RMSE, and R2 values of the ANN model were 0.1540, 0.0565, 0.2378, and 0.9998, respectively, which indicate high accuracy of the ANN model. In the equilibrium study, predicted results of the ANN model were also compared with experimental data and the results of other conventional isotherm models.  相似文献   

7.
In the cosmetic and pharmaceutical industries, it has been increasingly popular to use alternative solvents in the extraction of bioactive compounds from plants. Coffee pulp, a by-product of coffee production, contains different phenolic compounds with antioxidant properties. The effects of polyols, amplitude, extraction time, solvent concentration, and liquid–solid ratio on total phenolic content (TPC) using ultrasound-assisted extraction (UAE) were examined by single-factor studies. Three main factors that impact TPC were selected to optimize the extraction conditions for total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC), and their antioxidant activities using the Box-Behnken design. Different extraction methods were compared, the bioactive compounds were identified and quantified by liquid chromatography triple quadrupole mass spectrometer (LC-QQQ), and the cytotoxicity and cellular antioxidant activities of the extract were studied. According to the response model, the optimal conditions for the extraction of antioxidants from coffee pulp were as follows: extraction time of 7.65 min, liquid–solid ratio of 22.22 mL/g, and solvent concentration of 46.71 %. Under optimized conditions, the values of TPC, TFC, TTC, 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging assay, 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical scavenging assay, and Ferric reducing antioxidant power assay (FRAP) were 9.29 ± 0.02 mg GAE/g sample, 58.82 ± 1.38 mg QE/g sample, 8.69 ± 0.25 mg TAE/g sample, 7.56 ± 0.27 mg TEAC/g sample, 13.59 ± 0.25 mg TEAC/g sample, and 10.90 ± 0.24 mg FeSO4/g sample, respectively. Compared with other extraction conditions, UAE with propylene glycol extract (PG-UAE) was significantly higher in TPC, TFC, TTC, DPPH, ABTS, and FRAP response values than UAE with ethanol (EtOH-UAE), maceration with propylene glycol (PG-maceration), and maceration with ethanol (EtOH -maceration) (p < 0.05). Major bioactive compounds detected by LC-QQQ included chlorogenic acid, caffeine, and trigonelline. At higher concentrations starting from 5 mg/ml, PG-UAE extract showed higher cell viability than EtOH-UAE in both cytotoxicity and cellular antioxidant assays. The researcher expects that this new extraction technique developed in this work could produce a higher yield of bioactive compounds with higher biological activity. Therefore, they can be used as active ingredients in cosmetics (anti-aging products) and pharmaceutical applications (food supplements, treatment for oxidative stress-related diseases) with minimal use of chemicals and energy.  相似文献   

8.
Moderately uniform magnetic poly(methylmethacrylate–divinylbenzene–glycidylmethacrylate) microspheres (poly(MMA–DVB–GMA) microspheres) were prepared by spraying suspension copolymerization of methyl methacrylate, divinylbenzene and glycidyl methacrylate in the presence of Fe3O4 magnetic fluid. A protein adsorption assay indicated that these magnetic microspheres could significantly improve the capacity of protein adsorption.  相似文献   

9.
Flaxseed accumulates in its seedcoat a macromolecular complex composed of lignan (secoisolariciresinol diglucoside, SDG), flavonol (herbacetin diglucoside, HDG) and hydroxycinnamic acids (p-couramic, caffeic and ferulic acid glucosides). Their antioxidant and/or cancer chemopreventive properties support their interest in human health and therefore, the demand for their extraction. In the present study, ultrasound-assisted extraction (UAE) of flaxseed phenolic compounds was investigated. Scanning Electron Microscopy imaging and histochemical analysis revealed the deep alteration of the seedcoat ultrastructure and the release of the mucilage following ultrasound treatment. Therefore, this method was found to be very efficient for the reduction of mucilage entrapment of flaxseed phenolics. The optimal conditions for UAE phenolic compounds extraction from flaxseeds were found to be: water as solvent supplemented with 0.2 N of sodium hydroxide for alkaline hydrolysis of the SDG–HMG complex, an extraction time of 60 min at a temperature of 25 °C and an ultrasound frequency of 30 kHz. Under these optimized and validated conditions, highest yields of SDG, HDG and hydroxycinnamic acid glucosides were detected in comparison to other published methods. Therefore, the procedure presented herein is a valuable method for efficient extraction and quantification of the main flaxseed phenolics. Moreover, this UAE is of particular interest within the context of green chemistry in terms of reducing energy consumption and valuation of flaxseed cakes as by-products resulting from the production of flax oil.  相似文献   

10.
Investigations of the morphologic, mesomorphic, thermotropic, thermo-optical and thermodynamical properties of new imine compounds and their copper complexes, synthesized by our group, have been carried out. Temperature transformations of typical textures for mesophases, taking place in imine compounds and copper complexes, and the peculiarities of the biphasic regions at the direct and reverse mesophase–isotropic liquid and isotropic liquid–mesophase phase transitions have been investigated.  相似文献   

11.
TiO2 nanotubes were prepared by hydrothermal method and Au (or Pt) was loaded on TiO2 nanotubes by photodeposition method. The photocatalysts were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and N2 adsorption technique, respectively. The photocatalytic properties of the samples were also investigated. The results show that TiO2 nanotubes with uniform diameter were prepared, and they have specific surface areas over 400 m2/g. The specific surface areas of TiO2 nanotubes decrease with the increasing of calcining temperature, and crystalline phase of TiO2 in the wall of nanotubes was transformed from anatase into rutile phase in calcination process. The photocatalytic activities of TiO2 nanotubes are higher than that of nanosized TiO2, and the photocatalytic activities of TiO2 nanotubes were enhanced after loading Au (or Pt). After irradiation for 40 min under a 300 W of middle-pressure mercury lamp (MPML), the degradation rate of methyl orange solution using the Au/TiNT-500 (or Pt/TiNT-500) as a catalyst can reach 96.1% (or 95.1%). On the other hand, Au-loaded sample has evident adsorption peak in visible range, indicating that Au-loaded TiO2 nanotubes are hopeful to become visible light photocatalyst.  相似文献   

12.
In this study, magnetic polymer-coated microspheres were prepared by the microemulsion polymerization of styrene (St), methacrylic acid (MAA), acryamide (AM) in the presence of emulsifiers with the size of 1–5 μm. The magnetic material (i.e. Fe3O4) coated with oleic acid used in the preparation of the microspheres was synthesized in a classical co-precipitation procedure. The morphological and magnetic properties of the microspheres were investigated by different techniques (i.e. TEM, TGA, optical microscopy, vibrating sample magnetometer). The results indicated that the magnetic microspheres were superparamagnetic, well shaped spheres, mono-dispersed with abundant functional groups on the surfaces of the magnetic microspheres and good thermal stability. The microspheres could be linked well with the avidin and FITC antibody.  相似文献   

13.
Phenolic compounds are secondary metabolites involved in plant adaptation processes. The development of extraction procedures, quantification, and identification of this compounds in habanero pepper (Capsicum chinense) leaves can provide information about their accumulation and possible biological function. The main objective of this work was to study the effect of the UAE method and the polarity of different extraction solvents on the recovery of phenolic compounds from C. chinense leaves. Quantification of the total phenolic content (TPC), antioxidant activity (AA) by ABTS+ and DPPH radical inhibition methods, and the relation between the dielectric constant (ε) as polarity parameter of the solvents and TPC using Weibull and Gaussian distribution models was analyzed. The major phenolic compounds in C. chinense leaves extracts were identified and quantified by UPLC-PDA-ESI-MS/MS. The highest recovery of TPC (24.39 ± 2.41 mg GAE g−1 dry wt) was obtained using MeOH (50%) by UAE method. Correlations between TPC and AA of 0.89 and 0.91 were found for both radical inhibition methods (ABTS+ and DPPH). The Weibull and Gaussian models showed high regression values (0.93 to 0.95) suggesting that the highest phenolic compounds recovery is obtained using solvents with “ε” values between 35 and 52 by UAE. The major compounds were identified as N-caffeoyl putrescine, apigenin, luteolin and diosmetin derivatives. The models presented are proposed as a useful tool to predict the appropriate solvent composition for the extraction of phenolic compounds from C. chinense leaves by UAE based on the “ε” of the solvents for future metabolomic studies.  相似文献   

14.
In this work, pore texture characteristics of a series of Ce(IV) or Zr(IV) montmorillonite phosphate cross-linked compounds obtained by precipitation of cerium or zirconium phosphate with dilute H3PO4 on the micelles of an aqueous montmorillonite suspension, previously submitted to ion-exchange processes to replace its exchange ions with Ce(IV) or Zr(IV), are studied. Surface areas and pore volumes of the different materials prepared are determined by N2 adsorption at 77 K and mercury porosimetry techniques. Analysis of the N2 adsorption isotherms by the t-De Boer and Dubinin-Radushkevich methods, revealed the presence of a certain degree of microporosity in all the materials studied. Moreover, analysis of the Hg intrusion data permitted to determine the contribution of the macro- and mesopores to the total surface area and pore volume of the prepared compounds. The results reveal a greater specific surface area for these compounds than for montmorillonite and the evolution of this parameter with thermal treatment is related to the nature and content of phosphate in the different samples. However, the changes recorded in the Vp and S/Vp parameters during the thermal process suggest that surface diffusion is the dominant transport mechanism in the sintering process.  相似文献   

15.
A sodium ion-conducting polymer electrolyte based on polyvinyl pyrrolidone (PVP) complexed with NaClO4 was prepared using the solution-cast technique. The cathode film of V2O5 xerogel modified with polyvinyl pyrrolidone was prepared using the sol-gel method. Investigations were conducted using X-ray diffractometry (XRD), Fourier transformation infrared (FT-IR) spectroscopy. The ionic conductivity and transference number measurements were performed to characterize the polymer electrolyte for battery applications. The transference number data indicated that the conducting species in these electrolytes are the anions. Using the electrolyte, electrochemical cells with a configuration Na/(PVP + NaClO4)/V2O5 modified by (PVP) were fabricated and their discharge profiles studied.  相似文献   

16.
The applicability of ZnS:Ni nanoparticles loaded on activated carbon derived from apple tree wood (ZnS:Ni-NPs-ACATW) for the adsorption of Methylene Blue (MB) and Janus Green B (JGB) dyes in single system from water solution has been described. The synthesized adsorbent characterized and identified by UV–Vis, FE-SEM, EDX, TEM, FTIR and XRD. The influences of operation parameters including initial MB or JGB concentration (9.0–33.0 mg L−1), pH (4.0–10.0), extent of adsorbent (0.08–0.12 g) and sonication time (4.0–8.0 min) investigated and subsequently best operational condition optimized by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF) using STATISTICA 10.0 software. At optimum conditions, maximum MB and JSB adsorption onto ZnS:Ni-NPs-ACATW, i.e. 99.57% ± 1.34 and 98.70% ± 2.01, respectively was achieved pH of 7.0, 0.11 g adsorbent, 14 and 28 mg L−1 of MB and JSB concentration respectively and 8 min sonication time. Experimental data were modelled by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherms. Langmuir isotherm and monolayer adsorption capacity of MB and JSB was found to be 21.79 and 28.01 mg g−1 respectively. The regression results strongly support more contribution of pseudo-second-order model for more accurate and repeatable representation of kinetic data. These results reveal that ZnS:Ni-NPs-ACATW could be useful as agents to efficiently remove dyes (JGB and MB) from contaminated water and can be very well recommended for wastewater remediation and control of environmental pollution.  相似文献   

17.
We have performed ab initio self-consistent calculations based on full potential linear augmented plane-wave method (FP-LAPW) with the local density approximation (LDA) and generalised gradient approximation (GGA) to investigate the relativistic effects on the structural, electronic, transport and optical properties of II–VI compounds. We mainly show that the stabilisation (destabilisation) of s, p*(p) orbital energies reduces the lattice parameters of II–VI compounds, the band gaps and the effective masses. This, however, induces strong spin–orbit splitting of heavier II–VI compounds.  相似文献   

18.
1-acryloylpyrrolidine-2-carboxylic acid (APCA) monomer was copolymerized with acrylonitrile (AN) by aqueous suspension polymerization. High molecular weight (HMW) copolymers of AN and APCA [poly(AN-co-APCA)] with different copolymer composition were successfully prepared by employing azobisisobutyronitrile (AIBN) as initiator and polyvinyl alcohol (PVA) as dispersant in a H2O/N,N-dimethylformamide (DMF) mixture at 60°C. The PAN homopolymer and copolymers were characterized by elemental analysis (EA), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The EA results indicated that the content of oxygen increased significantly in PAN copolymers with increasing APCA content. The APCA copolymer composition calculated from the EA was higher than that from 1H NMR spectra. The FTIR spectra of PAN and poly(AN-co-APCA) with different monomer ratios confirmed that the contents of APCA units in the copolymer chains increased with increasing APCA content in the feed. The DSC exotherms revealed that copolymerization with APCA could slow the rate of the exothermic reactions during the heat-treatment processes. The XRD results indicated that the PAN homopolymer and copolymers poorly crystallized and the crystallinity decreased with increasing APCA contents.  相似文献   

19.
The synthesis, crystal structure and physical properties of chiral, three-dimensional anhydrous potassium tris(oxalato)ferrate(III) [K3Fe(C2O4)3] are described. X-ray analysis reveals that the compound crystallized in the chiral space group P4132 of cubic system with a=b=c=13.5970(2), Z=4. The structure of the complex consists of infinite anionic [Fe(C2O4)3]3− units with distorted octahedral environment of iron surrounded by six oxygen atoms of three oxalato groups. The anionic units are interlinked through K+ ions of three different coordination environments of distorted octahedral, bicapped trigonal prismatic and trigonal prismatic yielding a three-dimensional motif. The two broad absorption bands at 644 and 924 nm from UV–vis–NIR transmittance spectra were ascribed to a ligand-to-metal charge transfer. The room temperature crystalline EPR spectra indicate the high-spin (S=5/2) of Fe(III) ion. The vibrating sample magnetometer measurement shows the paramagnetic nature at room temperature. Thermal studies of the compound confirm the absence of water molecule.  相似文献   

20.
Si K-edge XAFS was used to characterize a stoichiometric SiC film prepared by pulsed KrF laser deposition. The film was deposited on a p-type Si(1 0 0) wafer at a substrate temperature of 250 °C in high vacuum with a laser fluence of ∼5 J/cm2. The results reveal that the film contains mainly a SiC phase with an amorphous structure in which the Si atoms are bonded to C atoms in its first shell similar to that of crystalline SiC powder but with significant disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号