首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Aligned carbon nanotube/carbon (Acnt/C) nanocomposites have been fabricated by densifying an Acnt preform with chemical vapour infiltration technology. Microstructure observations show that pyrocarbon in Acnt/C was mainly rough lamella type while pyrocarbon in carbon fiber reinforced carbon matrix (C/C) composites was typically smooth lamella type in spite of the same process. The thermal conductivity of these Acnt/C nanocomposites is about 4 times that of C/C composites. Their electrical conductivity of Acnt/C nanocomposites was anisotropic, i.e. approximately 1.61×104 Ω−1 m−1 and 5.68×103 Ω−1 m−1 in the direction parallel and vertical to the aligned carbon nanotubes, respectively.  相似文献   

2.
In the work, short multi-walled carbon nanotubes (S-CNTs) were synthesized by chopping conventional μm-long multi-walled carbon nanotubes (L-CNTs) under ultrasonication in H2SO4/HNO3 mixed acids. A comparative electrochemical investigation performed in 6 M KOH solution demonstrated that a specific capacitance (SC) of ca. 14.6 μF cm−2 was delivered by the S-CNTs with the specific surface area (SSA) of 207 m2 g−1, much larger than that of ca. 10.1 μF cm−2 for the L-CNTs with the SSA of 223 m2 g−1, the reason for which was that S-CNTs with two open ends, due to good ion penetrability, provided more entrances for electrolyte ions to access the inner surface easily through their shorter inner pathway so as to enhance their SSA utilization and geometric SC. The surface structure disruption of S-CNTs, owing to ultrasonication and oxidation during chopping process, deteriorated their electronic conductivity and resulted in an inferior power property in contrast to L-CNTs.  相似文献   

3.
Heating of multi-walled carbon nanotubes is often required to obtain clean patterns in the field electron emission microscope (FEEM). A transmission electron micrograph study of morphological changes in the cap structure of multi-walled carbon nanotubes due to heating in vacuum is presented. The lack of significant structural change in the cap structure when specimens were heated to 1925 K for 2.5 h determines an upper bound for the diffusivity of multi-walled carbon nanotube surface atoms, of the order of 10−16 cm2/s at 1925 K.  相似文献   

4.
In this study the blends of polyethylene terephthalate (PET)/ethylene propylene diene rubber (EPDM) in the presence of multi-walled carbon nanotubes (MWCNT) (1 and 3?wt %) were prepared by melt compounding in an internal mixer. Mechanical and morphological properties of the nanocomposites were investigated. The thermal behaviors of the PET/EPDM nanocomposites were also investigated, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of the mechanical tests showed that the tensile strength, elastic modulus and the hardness of the blends were increased with increasing CNT, while the impact strength and elongation at break decreased. The DSC and TGA results showed an increase of melting temperature (Tm) and degradation temperature of the nanocomposites with the addition of the carbon nanotubes, because the carbon nanotubes serve both as nucleating agents to increase Tm and prevent the composite from degradation to increase the thermal stability. The microstructure of the composites was evaluated through field emission scanning electron microscopy (FESEM) and the results showed a good distribution of the MWCNT within the polymer blend.  相似文献   

5.
The effects of gamma-irradiation on the modification of the surface and structure of multi-walled carbon nanotubes were studied. Gamma-irradiation affected the graphitization properties of functional groups, and decreased the diameter of multi-walled carbon nanotubes. The irradiated multi-walled carbon nanotubes with the absorbed dose of 100 kGy exhibited a larger specific surface area and microporous volume as compared with the other samples. The Raman spectroscopy and X-ray photoelectron spectroscopy showed that the interaction between the gamma-irradiation and the multi-walled carbon nanotubes with the absorbed dose of 150 kGy destroyed the nanostructure of carbons, leading to the formation of diamond-like structures and carbon oxides. In addition, gamma-irradiation with the absorbed dose of 100 kGy improved multi-walled carbon nanotubes graphitization and surface properties while at higher absorbed dose (150 kGy), it induced damaged structures (sp3 bonds and oxygen compositions).  相似文献   

6.
The binding details and electronic properties of the co-crystal composed of poly(diiododiacetylene) and bis(nitrile) oxalamide are investigated using self-consistent field crystal orbital method. It is found that the cooperative effects exist in the stack of bis(nitrile) oxalamides and the hydrogen bond interaction between bis(nitrile) oxalamides plays an important role in the stability of the co-crystal. The calculated band structures show that the co-crystal is a semiconductor and the poly(diiododiacetylene) can be considered as a quasi one-dimensional chain. The calculated mobility for the one-dimensional poly(diiododiacetylene) chain has the order of 103 cm2 V−1 s−1.  相似文献   

7.
Rodlike thermotropic liquid crystalline polyester (TLCP) was synthesized from 4,4′-oxydibenzoyl chloride and resorcinol containing modified multi-walled carbon nanotubes (MWCNTs) by in situ high-temperature solution polymerization. The liquid crystalline properties and thermal stability of the resulted TLCP nanocomposites were characterized by XRD, DSC, TGA, SEM, POM, and optical analysis. The addition of small amount of MWCNTs into TLCP matrix could significantly improve the thermal stability. The mesophase temperature range of nanocomposites were widened and shifted to higher temperatures. This nanocomposite melting phase transition (Tm) value increases maximally to 38.4 °C compared with pure copolymer. Using the Horowits-Metzger kinetic method, the PE/M-0.5 gave the best performance in terms of the thermal stability. This result can be explained that the incorporation of MWCNTs into TLCP caused an interaction between TLCP and MWCNTs through π-π* conjugation.  相似文献   

8.
Dan Bai 《Applied Surface Science》2010,256(8):2643-1994
Free-standing multiwall carbon nanotubes (MWNTs) films were coated, using chemical vapor deposition method, with a thin layer of nanostructural ZnO. The morphology and crystal structure of the as-grown products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman scattering analyses. Field emission (FE) results demonstrated that the needle-like and spherical ZnO-MWNTs composite structure films possessed good performance with a turn-on field of 1.3, 2.2 V μm−1 and a threshold field of 2.6, 4.5 V μm−1, respectively. The glucose-sensing characteristic has also been studied. The multi-layer electrode (PDDA/GOx/ZnO/MWNTs) exhibited significant electrocatalysis to the oxidation and reduction of H2O2 than the PDDA/GOx/MWNTs electrode, which provided wide potential applications in clinical, environmental, and food analysis.  相似文献   

9.
Thorn-like, organometallic-functionalized carbon nanotubes were successfully developed via a novel microwave hydrothermal route. The organometallic complex with methyl orange and iron (III) chloride served as reactive seed template, resulting in the oriented polymerization of pyrrole on the modified carbon nanotubes without the assistance of other oxidants. Morphological and structural characterizations of the carbon nanotube/methyl orange-iron (III) chloride and polypyrrole/carbon nanotube composites were examined using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), infrared spectroscopy and X-ray diffraction (XRD). The electrochemical property of the polypyrrole/carbon nanotube composite was elucidated by cyclic voltammetry and galvanostatic charge-discharge. A specific capacitance of 304 F g−1 was obtained within the potential range of −0.5-0.5 V in 1 M KCl solution.  相似文献   

10.
In this work, we report the mechanical and electrical properties of carbon nanotubes/epoxy composites prepared with aligned and randomly oriented nanotubes as filler. The samples are disks of 30 mm in diameter and 3 mm in thickness. To obtain the carbon nanotubes alignment, an external electric field (250 VAC; 50 Hz) was applied through the thickness of the sample during all the cure process. The AC electrical current was measured, during the cure, as a strategy to determine the optimum time in which the alignment reaches the maximum value. DC conductivity measured after the cure shows a percolation threshold in the filler content one order of magnitude smaller for composites with aligned nanotubes than for composites with randomly oriented filler (from 0.06 to 0.5 wt%). In the percolation threshold, the achieved conductivity was 1.4×10−5 Sm−1. In both cases, aligned and randomly distributed carbon nanotube composites, the wear resistance increases with the addition of the filler while the Rockwell hardness decreases independently of the nanotubes alignment.  相似文献   

11.
V. Palermo  A. Parisini 《Surface science》2006,600(5):1140-1146
SiC nanocrystals are grown at high temperature on Si(1 0 0) and Si(1 1 1) surfaces starting from a chemisorbed layer of methanol. The decomposition of this layer allows to have a well defined amount of carbon to feed SiC growth. Nanocrystals ranging from 10 nm to 50 nm with density from 100 μm−2 to 1500 μm−2 are obtained, and the total volume of produced SiC corresponds to carbon provided by the chemisorbed organic layer. Large differences in nanocrystal size and density, as well as in surface roughness, are observed depending on substrate orientation. The internal structure, crystallinity and epitaxy of nanocrystals grown on Si(1 0 0) are studied using cross-sectional transmission electron microscopy (XTEM), methanol adsorption and surface evolution using scanning tunnelling microscopy (STM). The joint application of XTEM and STM techniques allows a complete characterization of the geometry and chemical composition of these nanostructures.  相似文献   

12.
Dandelion-like gallium nitride (GaN) microstructures were successfully synthesized via Ni catalyst assisted chemical vapor deposition method at 1200 °C under NH3 atmosphere by pre-treating precursors with aqueous ammonia. The as-synthesized product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). X-ray diffraction analysis revealed that as-synthesized dandelion-like GaN was pure and has hexagonal wurtzite structure. SEM results showed that the size of the dandelion-like GaN structure was in the range of 30-60 μm. Dandelion-like GaN microstructures exhibited reasonable field emission properties with the turn-on field of 9.65 V μm−1 (0.01 mA cm−2) and threshold field of 11.35 V μm−1 (1 mA cm−2) which is sufficient for applications of electron emission devices, field emission displays and vacuum micro electronic devices. Optical properties were studied at room temperature by using fluorescence spectrophotometer. Photoluminescence (PL) measurements of dandelion-like GaN showed a strong near-band-edge emission at 370.2 nm (3.35 eV) with blue band emission at 450.4 nm (2.75 eV) and 465.2 nm (2.66 eV) but with out yellow band emission. The room-temperature photoluminescence properties showed that it has also potential application in light-emitting devices. The tentative growth mechanism for the growth of dandelion-like GaN was also described.  相似文献   

13.
A new and complex modification technique of glassy carbon electrode (GCE) with multi-walled carbon nanotubes (MWNTs) was developed. Firstly, MWNTs were electro-deposited on GCE at 1.70 V for 2 h. Secondly, by layer-by-layer (LBL) self-assembly technique, a functional membrane of {PDDA/MWNTs}n were fabricated by alternative immersion in 1% PDDA solution and 1 mg L−1 MWNTs dispersion either. As a result, the modified membrane with five {PDDA/MWNTs} bilayers have good sensitivity, stability, anti-fouling ability and catalytic activity for thiocholine (TCh) detection, the oxidation potential on the modified GCE was decreased almost by 50% while the peak current was increased almost by 100% compared with that on bare GCE. Meanwhile, it showed a low detection limit of less than 7.500 × 10−7 mol L−1 TCh.  相似文献   

14.
Carbon nanotubes with uniform density were synthesized on carbon fiber substrate by the floating catalyst method. The morphology and microstructure were characterized by scanning electron microscopy and Raman spectroscopy. The results of field emission showed that the emission current density of carbon nanotubes/carbon fibers was 10 μA/cm2 and 1 mA/cm2 at the field of 1.25 and 2.25 V/μm, respectively, and the emission current density could be 10 and 81.2 mA/cm2 with the field of 4.5 and 7 V/μm, respectively. Using uniform and sparse density distribution of carbon nanotubes on carbon fiber substrate, the tip predominance of carbon nanotubes can be exerted, and simultaneously the effect of screening between adjacent carbon nanotubes on field emission performance can also be effectively decreased. Therefore, the carbon nanotubes/carbon fibers composite should be a good candidate for a cold cathode material.  相似文献   

15.
A nanostructured surface layer was formed on a carbon steel by means of surface mechanical attrition treatment (SMAT). The microstructure of the surface layer of the SMATed sample was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness and residual stress distribution along the depth from the SMATed surface layer were measured at the same time. Fatigue behaviors of the carbon steel subjected to the SMAT process were investigated. A nanostructured layer with average grains size of ∼12.7 nm was formed, of which microhardness is more than twice as high as that in matrix and residual compressive stress can reach about −400 MPa with maximum depth of ∼600 μm. The fatigue strength of as-received sample is 267 MPa and that of SMATed sample is 302 MPa based on fatigue life 5 × 106 cycles. The SMAT process has improved the fatigue strength by as much as 13.1% for the carbon steel. It is shown that the SMAT is an effective method to render the material with the features, such as a nanostructured and work-hardened surface layer as well as compressive residual stresses, which can pronouncedly improve the fatigue strength of the carbon steel.  相似文献   

16.
Silicon nanowire (SiNW) arrays were fabricated on silicon wafers by the metal-assisted chemical etching method. Varied average diameters of SiNW arrays were realized through further treatment in a mixed agent of HF and HNO3 of certain concentrations. After the treatment, there were more than 93% SiNWs with diameters smaller than 100 nm. The tip of each SiNW was subsequently wrapped with multi-walled carbon nanotubes (MWCNTs) with chemical vapor deposition method. The as-fabricated MWCNT/SiNW arrays were fabricated into electric field emitters, with turn-on field of 2.0 V/μm (current density: 10 μA/cm2), much lower than that of SiNW array (5.0 V/μm). The turn-on electric field of MWCNT/SiNW array decreased with the decreasing of the average diameter of SiNWs, indicating the performance of the field emission is relative to the morphology of SiNWs. As the SiNW array is uniform in height and easy to fabricate, the MWCNT/SiNW array shows potential applications in flat electric display.  相似文献   

17.
In this paper, an amperometric electrochemical biosensor for the detection of hydrogen peroxide (H2O2), based on gold nanoparticles (GNPs)/thionine (Thi)/GNPs/multi-walled carbon nanotubes (MWCNTs)-chitosans (Chits) composite film was developed. MWCNTs-Chits homogeneous composite was first dispersed in acetic acid solution and then the GNPs were in situ synthesized at the composite. The mixture was dripped on the glassy carbon electrode (GCE) and then the Thi was deposited by electropolymerization by Au-S or Au-N covalent bond effect and electrostatic adsorption effect as an electron transfer mediator. Finally, the mixture of GNPs and horseradish peroxidase (HRP) was assembled onto the modified electrode by covalent bond. The electrochemical behavior of the modified electrode was investigated by scanning electron microscope, cyclic voltammetry and chronoamperometry. This study introduces the in situ-synthesized GNPs on the other surface of the modified materials in H2O2 detection. The linear response range of the biosensor to H2O2 concentration was from 5 × 10−7 mol L−1 to 1.5 × 10−3 mol L−1 with a detection limit of 3.75 × 10−8 mol L−1 (based on S/N = 3).  相似文献   

18.
Carbon nanotubes as reinforcement of styrene-butadiene rubber   总被引:1,自引:0,他引:1  
This study reports an easy technique to produce cured styrene-butadiene rubber (SBR)/multi-walled carbon nanotubes (MWCNT) composites with a sulphur/accelerator system at 150 °C. Significant improvement in Young's modulus and tensile strength were achieved by incorporating 0.66 wt% of filler without sacrificing SBR elastomer high elongation at break. A comparison with carbon black filled SBR was also made. Field emission scanning electron microscopy was used to investigate dispersion and fracture surfaces. Results indicated that the homogeneous dispersion of MWCNT throughout SBR matrix and strong interfacial adhesion between oxidized MWCNT and the matrix are responsible for the considerable enhancement of mechanical properties of the composite.  相似文献   

19.
Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (N-HATU) and N,N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 μg ml−1, were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 μg ml−1 reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells.  相似文献   

20.
Activated carbon fibers were prepared from rayon-based carbon fibers by two step activations with steam and KOH treatments. Hydrogen storage properties of the activated rayon-based carbon fibers with high specific surface area and micropore volume have been investigated. SEM, XRD and Brunauer-Emmett-Teller (BET) were used to characterize the samples. The adsorption performance and porous structure were investigated by nitrogen adsorption isotherm at 77 K on the base of BET and density functional theory (DFT). The BET specific surface area and micropore volume of the activated rayon-based carbon fibers were 3144 m2/g and 0.744 m3/g, respectively. Hydrogen storage properties of the samples were measured at 77 and 298 K with pressure-composition isotherm (PCT) measuring system based on the volumetric method. The capacities of hydrogen storage of the activated rayon-based carbon fibers were 7.01 and 1.46 wt% at 77 and 298 K at 4 MPa, respectively. Possible mechanisms for hydrogen storage in the activated rayon-based carbon fibers are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号