首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Magnetic polymer composite microspheres with high magnetite contents were prepared by dispersion polymerization of styrene (St) and glucidylmethacrylate (GMA), in which Fe3O4 nanoparticles were co-stabilized by oleic acid and silane surfactants. The microstructure of the composite microspheres was characterized by Fourier transform infrared (FTIR) spectrometry, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results demonstrated the presence of a hybrid morphology with organic polymer-encapsulated inorganic particles. Subsequently, thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM) were used to evaluate the magnetite content of the microspheres. It was found that an accordant magnetite content of about 70 wt%, could be obtained for the magnetic polymer microspheres, a value significantly higher than those reported thus far. The possible mechanism for the formation of the microspheres was proposed.  相似文献   

2.
Azide-functionalized chain transfer agent (CTA) was synthesized and subsequently employed to mediate the reversible addition fragmentation transfer (RAFT) polymerization of poly(ethylene glycol) monomethacrylate (PEGMA) on the alkyne-functionalized Fe3O4 nanoparticles surface together with click chemistry. In a single pot procedure, azide-functionalized CTA, alkyne-functionalized Fe3O4 and PEGMA were combined to produce the desired product. Fourier transformed infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) results showed that PEGMA chains were grafted to Fe3O4 nanoparticles using RAFT polymerization and click chemistry.  相似文献   

3.
The NiFe2O4 nanoparticles were prepared by the combustion method and these nanoparticles were successfully coated with polyethylene glycol (PEG) for the possible biomedical applications such as magnetic resonance imaging, drug delivery, tissue repair, magnetic fluid hyperthermia etc. The structural and magnetic characterizations of NiFe2O4 nanoparticles were carried out by x-ray diffraction and vibrating sample magnetometry techniques, respectively. The morphology of the uncoated and coated nanoparticles was studied by scanning electron microscopy. The existence of PEG layer on NiFe2O4 nanoparticles was confirmed by fourier transform infrared spectroscopy technique.  相似文献   

4.
In this study, the influence of surface coating on the magnetic and heat dissipation properties of Fe3O4 nanoparticles was investigated. Fe3O4 nanoparticles that ranged in size between (particle sizes of 20 and 30 nm) were coated with polyethylenimine (PEI), oleic acid, and Pluronic F-127. Surface coatings that were composed of thick layers of oleic acid and Pluronic F-127 reduced dipole interactions between the particles, and resulted in reduced coercivity and decreased Néel relaxation times. The ac magnetization measurements revealed that the heat dissipation of the PEI-coated Fe3O4 nanoparticles was induced by hysteresis loss and Brownian relaxation loss and that of the oleic-acid-coated Fe3O4 nanoparticles was mainly induced by hysteresis loss and Néel relaxation loss.  相似文献   

5.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe3O4 magnetic nanoparticles were prepared by the co-precipitation of Fe3+ and Fe2+, NH3·H2O was used as the precipitating agent to adjust the pH value, and the aging of Fe3O4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe3O4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe3O4 crystallites was found to be around 8–9 nm. Thereafter, the surface of Fe3O4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe3O4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe3O4 nanoparticles. The dispersion of Fe3O4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe3O4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe3O4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe3O4 nanoparticles. The Fe3O4 magnetic fluid was characterized using UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.46×10−8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe3O4 nanoparticles in the fluid was 36.19 nm.  相似文献   

6.
The preparation of superparamagnetic magnetite (Fe3O4) nanoparticles by electro-precipitation in ethanol is proposed. Particle average size can be set from 4.4 to 9 nm with a standard deviation around 20%. Combination of wide-angle X-ray scattering (WAXS), Electron energy loss spectroscopy (EELS) and Mössbauer spectroscopy characterizations clearly identifies the particles as magnetite single-crystals (Fe3O4).  相似文献   

7.
Nanoparticles of Fe3O4 were synthesized by co-precipitation in an aqueous solution containing ferrous and ferric salts (1:2) at varying pH with ammonia as a base. It was found that the value of pH influences the reaction mechanism for the formation of Fe3O4. Furthermore, the addition of mercaptoethanol significantly reduced the crystalline size of Fe3O4 nanoparticles from 15.03 to 8.02 nm. X-ray diffraction (XRD) spectra revealed that the synthesized nanoparticles were ε-Fe2O3 or Fe3O4 phase. To further prove the composition of the product, as-prepared Fe3O4 were examined by X-ray photoelectron spectroscopy (XPS). Magnetic properties of the obtained particles were determined by vibrating sample magnetometer (VSM). Further analysis of the X-ray studies shows that while maintaining a pH value of 6 and 9 in a solution containing iron salts II and III ions produces ε-Fe2O3. Whereas a pH value of 11 produces magnetite (Fe3O4) phase. All of these results show that the pH has a major role in the observed phase formation of (Fe3O4) nanoparticles.  相似文献   

8.
A kind of magnetic multiple functional groups nanocomposites, chitosan–ethylenediaminetetraacetate (EDTA)-enwrapped CoFe2O4 nanoparticles, i.e. CoFe2O4@chitosan–EDTA nanocomposites were synthesized by a facile zero-length emulsion crosslinking process. In this method, CoFe2O4 was used as magnetic core, and 1-ethyl-3-(3-dimethylminopropyl) carbodiimide hydrochloride (EDAC) was used as a crosslinker, integrating amino group of chitosan and carboxyl group of EDTA. Determination of amino groups in chitosan modified by EDAC-activated EDTA was carried out through the trinitrobenzenesulfonic acid (TNBS) method. The as-prepared magnetic nanocomposites were characterized by XRD, FT-IR, XPS, SEM, EDS, TEM, SAED and vibrating sample magnetometer (VSM), and the results showed that the as-prepared CoFe2O4@chitosan–EDTA nanocomposites have good dispersibility, spherical shape and enough magnetization. The method proposed can be extended to fabricate other magnetic nanocomposites possessed amino and carboxyl groups.  相似文献   

9.
In this paper we report structural and magnetic properties of Fe3O4 nanoparticles synthesized by thermal decomposition of ball milled iron nitrate and citric acid in N2 and air ambient. The XRD pattern of samples which are prepared in air shows some impurity phases, while the samples synthesized in the N2 atmosphere are almost pure Fe3O4 phase. The result shows that by increasing the particle size, the magnetization of the samples increases. The increase of magnetization by increasing the particle size could be attributed to the lower surface spin canting and surface spin disorder of the larger magnetic nanoparticles. The results of ac magnetic susceptibility measurements show that the susceptibility data are not in accordance with the Néel -Brown model for superparamagnetic relaxation, but fit well with conventional critical slowing down model which indicates that the dipole-dipole interactions are strong enough to cause superspin-glass like phase in these samples.  相似文献   

10.
丁皓  申承民  惠超  徐梽川  李晨  田园  时雪钊  高鸿钧 《中国物理 B》2010,19(6):66102-066102
Monodisperse Au-Fe 3 O 4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution.The size of Au and Fe 3 O 4 particles can be controlled by changing the injection temperature.UV-Vis spectra show that the surface plasma resonance band of Au-Fe 3 O 4 heterodimeric NPs was evidently red-shifted compared with the resonance band of Au NPs of similar size.The as-prepared heterodimeric Au-Fe 3 O 4 NPs exhibited superparamagnetic properties at room temperature.The Ag-Fe 3 O 4 heterodimeric NPs were also prepared by this synthetic method simply using AgNO 3 as precursor instead of HAuCl 4.It is indicated that the reported method can be readily extended to the synthesis of other noble metal conjugated heterodimeric NPs.  相似文献   

11.
The paper shows the application of a new method – Magnetic Nanoparticles Focusing 3D, MNF-3D – for focusing of magnetic nanoparticles at any point in a three-dimensional space between the rotating magnet system. The results of focusing process of nanoparticles in water, human blood, human serum and polyurethane sponge are presented. Additionally, blood flow was also considered. The effectiveness of nanoparticle focusing was monitored optically and quantitatively by electron spin resonance method. The method enabled focusing of magnetic nanoparticles within a few minutes in different environments. A good efficiency of focusing process was observed for all the samples.  相似文献   

12.
In the present study, the buffering effect of magnetite nanoparticles (Fe3O4) dispersed in an aqueous solution on the local pHpH value is investigated. It manifests itself in the fact that when some amount of acid or base is added to the solution then the solution near the nanoparticles surface becomes, respectively, less acidic and less alkaline than it is expected. It is the result of both the local electrostatic field, which represents the electric double layer at the surface of magnetic nanoparticles and the magnetic field around the nanoparticles. The magnetite nanoparticles exhibit very low toxicity and they are becoming increasingly important for new biomedical applications related to their effects on chemical reactions in body tissues and cells. The question arises, how strong are these effects at the nanoscale? The strength of the buffering property of magnetite nanoparticles is investigated both theoretically and experimentally by the direct measurement of the local pHpH value of a magnetic nanoparticles suspension. The theoretical model is based on stochastic equations describing the ions diffusing in the neighborhood of the electric double layer of the magnetic material. The electric double layer is modeled with the help of the Poisson–Boltzmann model. It is directly shown that both the electrostatic field and the magnetic field are responsible for the observed local changes of the pHpH value with respect to the bulk pHpH value.  相似文献   

13.
One-dimensional magnetic nanostructures have recently attracted much attention because of their intriguing properties that are not realized by their bulk or particle form. These nanostructures are potentially useful for the application to ultrahigh-density data storages, sensors and bulletproof vest. The magnetic particles in magnetic nanofibers of blend types cannot fully align along the external magnetic field because magnetic particles are arrested in solid polymer matrix. To improve the mobility of magnetic particles, we used magneto-rheological fluid (MRF), which has the good mobility and dispersibility. Superparamagnetic core/sheath composite nanofibers were obtained with MRF and poly (ethylene terephthalate) (PET) solution via a coaxial electrospinning technique. Coaxial electrospinning is suited for fabricating core/sheath nanofibers encapsulating MRF materials within a polymer sheath. The magnetic nanoparticles in MRF were dispersed within core part of the nanofibers. The core/sheath magnetic composite nanofibers exhibited superparamagnetic behavior at room temperature and the magnetic nanoparticles in MRF well responded to an applied magnetic field. Also, the mechanical properties of the nanofiber were improved in the magnetic field. This study aimed to fabricate core/sheath magnetic composite nanofibers using coaxial electrospinning and characterize the magnetic as well as mechanical properties of composite nanofibers.  相似文献   

14.
A grid of micrometer-sized core-shell particles was fabricated by magnetophoretic deposition using a water-based colloidal solution. The core-shell particles consist of a 640 nm diameter polystyrene spherical core covered with a shell of five layers of 12 nm diameter Fe3O4 nanocrystals. The separation and the length of the individual chains can be tuned by the magnetic field strength and the concentration of the particle solution. The magnetic properties were characterized by angular-dependent ferromagnetic resonance and SQUID magnetometry.  相似文献   

15.
In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles using α-d-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe3O4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe3O4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature (Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe3O4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm−1 was indicative of Fe3O4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.  相似文献   

16.
We report on the fabrication of Ni/Al2O3/Si and textured Ni/Al2O3/Si3N4 multilayers containing Ni nanoparticles that exhibit significantly improved results. The secondary phases arising from thermal reaction between Ni and Si can be remarkably suppressed with increasing layers of Al2O3 and deposition of Ni/Al2O3 multilayers on Si3N4 substrates. Atomic force microscopy shows the formation of large as well as nanoclusters of Ni when grown on Si, whereas textured Ni nanoparticles are formed on Si3N4 substrates. The magnetization measurements on Ni/Al2O3/Si containing a single buffer layer of Al2O3 shows higher coercivity field with magnetic nanowire-like behavior, whereas with several Al2O3 alternate layers almost a superparamagnetic-like behavior is observed. However, significantly improved magnetic hysteresis was observed in textured Ni/Al2O3/Si3N4 multilayers due to preferred alignment of Ni nanocrystallites.  相似文献   

17.
Superparamagnetic Fe3O4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe3O4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe3O4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe3O4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (TB) of 150 K and saturation magnetization of 37.1 emu/g.  相似文献   

18.
XRD and XPS analyses revealed that a Fe(NO3)3·9H2O layer formed outside γ-Fe2O3 particles when Fe3O4 nanoparticles were treated with ferric nitrate. The particle density differed for untreated and treated particles and was not uniform for the latter. The specific saturation magnetization of both treated and untreated particles was used to estimate the thickness of the Fe(NO3)3·9H2O layer and the average density of the treated particles. The density of the treated particles was used to calculate the density of ferrofluids of different particle volume fractions. These values are in agreement with measured results. Therefore, the particle volume fraction can be designed to synthesize acid ionic ferrofluids based on Fe3O4 nanoparticles using Massart's method.  相似文献   

19.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the nanoparticle surface are presented in this paper. In these methods, Fe3O4 nanoparticles were prepared by co-precipitation, and the aging of nanoparticles was improved by applied magnetic field. The obtained nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and vibrating sample magnetometer (VSM). Thereafter, to enhance the compatibility between nanoparticles and water, an effective surface modification method was developed by grafting acrylic acid onto the nanoparticle surface. FT-IR, XRD, transmission electron microscopy (TEM), and thermogravimetry (TG) were used to characterize the resultant sample. The testing results indicated that the polyacrylic acid chains have been covalently bonded to the surface of magnetic Fe3O4 nanoparticles. The effects of initiator dosage, monomer concentration, and reaction temperature on the characteristics of surface-modified Fe3O4 nanoparticles were investigated. Moreover, the Fe3O4-g-PAA hybrid nanoparticles were dispersed in water to form ferrofluids (FFs). The obtained FFs were characterized by UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the high-concentration FF had excellent stability, with high susceptibility and high saturation magnetization. The rheological properties of the FFs were also investigated using a rotating rheometer.  相似文献   

20.
Cationic magnetic polymer particles Fe3O4/poly(styrene-butyl acrylate-[2-(methacryloxy)ethyl]trimethylammonium chloride), a type of potential gene carrier, were prepared by emulsifier-free emulsion polymerization with oleic acid modified magnetite Fe3O4, styrene, butyl acrylate and [2-(methacryloxy)ethyl]trimethylammonium chloride) (METAC). The morphology of the particles was characterized by transmission electron microscopy and the composites of particles were characterized by FT-IR spectroscopy, X-ray diffraction. These results showed that magnetic particles were well dispersed in polymers with the content of about 15%(wt/wt). The composites exhibited superparamagnetism and possessed a certain level of magnetic response. The interactions between the particles with calf-thymus DNA (ct DNA) were confirmed by zeta potential measurement, UV-vis spectroscopy and fluorescence spectroscopy. The DNA-binding capacity determined by the agarose gel electrophoresis showed good binding capacity of the emulsion to DNA. These results suggested the potential of the cationic magnetic polymer emulsion as gene target delivery carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号