首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Awl-shaped diamond-like carbon (DLC) was directly grown on anodic aluminum oxide (AAO) template by using filtered cathodic arc plasma (FCAP) technique at room temperature. The awls of DLC were about 250 nm in the height and the diameters of the awls were ∼100 nm at the top. The awl density was estimated to be ∼108 cm−2. A broad asymmetric band ranging from 1100 to 1800 cm−1 was detected by Raman spectrum. This asymmetric band was characteristic band of DLC. The sp3/(sp3+sp2) ratio of C-C bond of the awl-shaped DLC was measured by X-ray photoelectron spectrum, and it was about 68.3%. Field-emission properties of the awl-shaped DLC were investigated. A low turn-on field of 2.6 V/μm at 10 μA/cm2 with an emission area of 3.14 mm2 was achieved, and the emission current stability was very good. The results indicated that the electrons were emitted under both the effect of enhanced field because of the geometry and the work function of the DLC sample. Based on Fowler-Nordheim plot, the values of work function for the awl-shaped DLC were estimated in ranges of 0.23-1.08 from a linearity plot.  相似文献   

2.
Tantalum nitride films were deposited on silicon wafer and steel substrates by cathodic vacuum arc in N2/Ar gas mixtures. The chemical composition, crystalline microstructure and morphology of the films were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. According to the results, film composition and microstructure depends strongly on the N2 partial pressure and the applied negative bias (Vs).  相似文献   

3.
In this paper, un-doped zinc oxide (ZnO) films with various thicknesses (150, 250, 350, 450 and 550 nm) were successfully prepared onto PET substrates using cathodic vacuum arc technique at low-temperature (<40 °C). Their microstructure, optical and electrical properties were investigated and discussed. The films showed (0 0 2) peaks, an average transmittance over 80% in the visible region. Calculated values of the band gap are around 3.29-3.33 eV when the film thickness increased, indicating a slight blue shift of optical transmission spectra. The lowest resistivity about 5.26 × 10−3 Ω cm could be achieved for the un-doped ZnO film with thickness of 550 nm.  相似文献   

4.
E.W. Niu 《Applied Surface Science》2008,254(13):3909-3914
Ti-Zr-N (multi-phase) films were prepared by cathodic vacuum arc technique with different substrate bias (0 to −500 V), using Ti and Zr plasma flows in residual N2 atmosphere. It was found that the microstructure and mechanical properties of the composite films are strongly dependent on the deposition parameters. All the films studied in this paper are composed of ZrN, TiN, and TiZrN ternary phases. The grains change from equiaxial to columnar and exhibit preferred orientation as a function of substrate bias. With the increase of substrate bias the atomic ratio of Ti to Zr elements keeps almost constant, while the N to (Ti + Zr) ratio increases to about 1.1. The composite films present an enhanced nanohardness compared with the binary TiN and ZrN films deposited under the same condition. The film deposited with bias of −300 V possesses the maximum scratch critical load (Lc).  相似文献   

5.
Study of TiN and ZrN thin films grown by cathodic arc technique   总被引:1,自引:0,他引:1  
Thin films of TiN and ZrN were grown on stainless steel 316 substrate using the pulsed cathodic arc technique with different number of discharges (one to five discharges). The coatings were characterized in terms of crystalline structure, microstructure, elementary chemical composition and stoichiometric by X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy for chemical analyses (XPS), respectively. The XRD results show that for TiN as for ZrN, the preferential direction occurs in the plane (2 0 0), and this result stays when increasing the number of discharges. The grain size is increased with the increase of the number of discharges for both nitrides, the roughness for the TiN film is greater than for the ZrN film; these results were determined by AFM. XPS analysis determined that there is a higher nitrogen presence in the ZrN film than in the TiN film.  相似文献   

6.
Jun Xie 《哲学杂志》2013,93(11):820-832
Abstract

Ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition (PECVD) and hydrogen-free amorphous carbon (a-C) films of similar thickness deposited by filtered cathodic vacuum arc (FCVA) were subjected to rapid thermal annealing (RTA). Cross-sectional transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) were used to study the structural stability of the films. While RTA increased the thickness of the intermixing layer and decreased the sp3 content of the a-C:H films, it did not affect the thickness or the sp3 content of the a-C films. The superior structural stability of the FCVA a-C films compared with PECVD a-C:H films, demonstrated by the TEM and EELS results of this study, illustrates the high potential of these films as protective overcoats in applications where rapid heating is critical to the device functionality and performance, such as heat-assisted magnetic recording.  相似文献   

7.
R.S. Li 《Applied Surface Science》2009,255(9):4754-4757
Diamond-like carbon (DLC) films were deposited on Al substrates by electrodeposition technique under various voltages. The surface morphology and compositions of synthesized films were characterized by scanning electron microscopy and Raman spectroscopy. With the increase of deposition voltage, the sp2 phase concentration decreased and the surface morphology changed dramatically. The influence of deposition voltage on the field electron emission (FEE) properties of DLC films was not monotonic due to two adverse effects of deposition voltage on the surface morphology and compositions. The DLC film deposited under 1200 V exhibited optimum FEE property, including a lowest threshold field of 13 V/μm and a largest emission current density of 904.8 μA/cm2 at 23.5 V/μm.  相似文献   

8.
Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO2) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers.For the flavour removal test, two types of multilayer films were prepared, DLC/TiO2 films and DLC/TiO2/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO2-coated and the DLC/TiO2/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO2/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO2/DLC film had a photocatalytic effect even though the TiO2 film was covered with the DLC film.  相似文献   

9.
A diamond-like carbon film (DLC) was successfully synthesized using a hybrid PVD process, involving a filter arc deposition source (FAD) and a carbon plasma ion implanter (CPII). A quarter-torus plasma duct filter markedly reduced the density of the macro-particles. Graphite targets were used in FAD. Large electron and ion energies generated from the plasma duct facilitate the activation of carbon plasma and the deposition of high-quality DLC films. M2 tool steel was pre-implanted with 45 kV carbon ions before the DLC was deposited to enhance the adhesive and surface properties of the film. The ion mixing effect, the induction of residual stress and the phase transformation at the interface were significantly improved. The hardness of the DLC increased to 47.7 GPa and 56.5 GPa, and the wear life was prolonged to over 70 km with implantation fluences of 1 × 1017 ions/cm2 and 2 × 1017 ions/cm2, respectively.  相似文献   

10.
The formation of chromium carbide-based hard-coatings on steels using a 90°-bend filtered cathodic vacuum arc (FCVA) has extensive industrial applications; such coatings are free of macroparticles and exhibit excellent characteristics. In this investigation, a working pressure of C2H2/Ar was adopted to synthesize amorphous chromium carbide film (a-C:Cr) and crystalline chromium carbide film (cryst-Cr3C2) from a Cr target (99.95%) at 500 °C under a substrate voltage of −50 V. The corrosion behavior of a-C:Cr coated on steel (a-C:Cr/steel) and cryst-Cr3C2 coated on steel (cryst-Cr3C2/steel) were compared in terms of open-circuit potentials (OCP) and polarization resistance (Rp) in an aerated 3.5 wt% NaCl aqueous solution, as determined by electrochemical impedance spectroscopy (EIS). The XRD results indicated that the transformation of a-C:Cr to cryst-Cr3C2 is distinct as the working pressure declines from 1.2 × 10−2 to 2.9 × 10−3 Torr. The OCP of a-C:Cr/steel and cryst-Cr3C2/steel resemble each other and both assembly are nobler than uncoated steel. The Rp of the coatings exceeds that of the uncoated steel. The SEM observation and the EIS results demonstrate that the cryst-Cr3C2/steel more effectively isolates the defects than dose a-C:Cr/steel.  相似文献   

11.
Two types of diamond-like carbon (DLC) films with different bonding configurations were produced by pulse-assisted and DC-assisted plasma chemical vapor deposition. The chemical composition, surface morphology, microstructure, internal stress and tribological properties of the two films before and after the ultraviolet (UV) irradiation were investigated and compared. It was found that the UV irradiation had little effects on the chemical composition and surface morphology of both the films, but greatly influenced their tribological properties in the opposite trends. This result was attributed to the different changing outcomes of the bonding configuration induced by the UV actions of primary photo-dissociation and secondary recombination, wherein the inherent bonding configuration and internal stress played important roles.  相似文献   

12.
Multilayer silica/alumina films were created by plasma immersion implantation and deposition to protect against atomic oxygen (AO) in low earth orbit environment. The AO erosion mechanism of polyimide under multilayer silica/alumina films has been investigated using a ground-based AO simulator and Monte Carlo model. The results demonstrate that protective films are detached and plumped due to AO undercutting, and the exterior silica film is partly detached proven by chemical composition depth profile and erosion patterns. The undercutting model involving collision, diffusion, reaction, gas releasing, and retroaction on films is proposed. Based on the model, scattered impingement has serious erosion, although AO does not directly attack interior polymer. AO erosion predictions at two neighborhood cracks are first studied by Monte Carlo model for various incidence angles of AO. The protective film between cracks hinders the escape of AO, and accelerates the erosion.  相似文献   

13.
Ta-N thin films were deposited on AISI 317L stainless steel (SS) substrates by cathodic arc deposition (CAD) at substrate biases of −50 and −200 V. The as-deposited films were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX). The results show that stoichiometric TaN with hexagonal lattice (3 0 0) preferred orientation was achieved at the bias of −200 V. On the other hand, Ta-rich Ta-N thin film deposited at −50 V shows amorphous nature. According to the XPS result, Ta element in the films surface exist in bonded state, including the Ta-N bonds characterized by the doublet (Ta 4f7/2 = 23.7 eV and Ta 4f5/2 = 25.7 eV). Electrochemical properties of the Ta-N coated stainless steel systems were investigated using potentiodynamic polarization and electrochemical impedance spectroscope (EIS) in Hank's solution at 37 °C. For the Ta-N coated samples, the corrosion current (icorr) is two or three orders of magnitude lower than that of the uncoated ones, indicating a significantly improved corrosion resistance. Growth defects in the Ta-N thin films produced by CAD, however, play a key role in the corrosion process, especially the localised corrosion. Using the polarization fitting and the EIS modelling, we compared the polarization resistance (Rp) and the porosity (P) of the Ta-N coatings deposited at different biases. It seems that Ta-N film with comparatively lower bias (−50 V) shows better corrosion behavior in artifical physiological solution. That may be attributed to the effect of ion bombarding, which can be modulated by the substrate bias.  相似文献   

14.
Nano-multilayered Zr-O/Al-O coatings with alternating Zr-O and Al-O layers having a bi-layer period of 6-7 nm and total coating thickness of 1.0-1.2 μm were deposited using a cathodic vacuum arc plasma process on rotating Si substrates. Plasmas generated from two cathodes, Zr and Al, were deposited simultaneously in a mixture of Ar and O2 background gases. The Zr-O/Al-O coatings, as well as bulk ZrO2 and Al2O3 reference samples, were studied using X-ray photoelectron spectroscopy (XPS). The XPS spectra were analyzed on the surface and after sputtering with a 4 kV Ar+ ion gun. High resolution angle resolved spectra were obtained at three take-off angles: 15°, 45° and 75° relative to the sample surface.It was shown that preferential sputtering of oxygen took place during XPS of bulk reference ZrO2 samples, producing ZrO and free Zr along with ZrO2 in the XPS spectra. In contrast, no preferential sputtering was observed with Al2O3 reference samples. The Zr-O/Al-O coatings contained a large amount of free metals along with their oxides. Free Zr and Al were observed in the coating spectra both before and after sputtering, and thus cannot be due solely to preferential sputtering.Transmission electron microscopy revealed that the Zr-O/Al-O coatings had a nano-multilayered structure with well distinguished alternating layers. However, both of the alternating layers of the coating contained of a mixture of aluminum and zirconium oxides and free Al and Zr metals. The concentration of Zr and Al changed periodically with distance normal to the coating surface: the Zr maximum coincided with the Al minimum and vice versa. However the concentration of Zr in both alternating layers was significantly larger than that of Al. Despite the large free metal concentration, the Knoop hardness, 21.5 GPa, was relatively high, which might be attributed to super-lattice formation or formation of a metal-oxide nanocomposite within the layers.  相似文献   

15.
张振宇  路新春  雒建斌 《中国物理》2007,16(12):3790-3797
A novel method, pulsed laser arc deposition combining the advantages of pulsed laser deposition and cathode vacuum arc techniques, was used to deposit the diamond-like carbon (DLC) nanofilms with different thicknesses. Spectroscopic ellipsometer, Auger electron spectroscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and multi-functional friction and wear tester were employed to investigate the physical and tribological properties of the deposited films. The results show that the deposited films are amorphous and the sp$^{2}$, sp$^{3}$ and C--O bonds at the top surface of the films are identified. The Raman peak intensity and surface roughness increase with increasing film thickness. Friction coefficients are about 0.1, 0.15, 0.18, when the film thicknesses are in the range of 17--21~nm, 30--57~nm, 67--123~nm, respectively. This is attributed to the united effects of substrate and surface roughness. The wear mechanism of DLC films is mainly abrasive wear when film thickness is in the range of 17--41~nm, while it transforms to abrasive and adhesive wear, when the film thickness lies between 72 and 123~nm.  相似文献   

16.
徐骏  黄晓辉  李伟  王立  陈坤基 《中国物理》2002,11(5):502-505
A method in which nanometre-thick film deposition was alternated with hydrogen plasma annealing (layer-by-layer method) was applied to fabricate hydrogenated amorphous carbon films in a conventional plasma-enhanced chemical vapour deposition system.It was found that the hydrogen plasma treatment could decrease the hydrogen concentration in the films and change the sp^2/sp^3 ratio to some extent by chemical etching.Blue photoluminescence was observed at room temperature,as a result of the reduction of sp^2 clusters in the films.  相似文献   

17.
The nitrogen-doped diamond-like carbon (DLC) films were deposited on high speed steel (HSS) substrates in the direct current unbalanced magnetron sputtering system. Sulphurized layer was formed on the surface of DLC films by means of liquid sulfidation in the intermixture of urea and thiourea solution in order to improve the tribological properties of DLC films. The influence of sulfidation treatment on the structure and tribological properties of DLC films was investigated in this work. The structure and wear surface morphology of DLC films were analyzed by Raman spectroscopy, XPS and SEM, respectively. It reveals that the treated films are smooth and uniform; and sulfur atoms are bonded chemically. The treated films have broader distribution of Raman spectra in the range of 1000-1800 cm−1 and higher ID/IG ratio than the untreated films as a result of the appearance of the crystalline graphite structure after the sulfidation treatment. It is showed that the sp2 relative content increase in the treated films from the XPS measurement. The Raman results are consistent with the XPS results. The tribological properties of DLC films were investigated using a ball-on-disk rotating friction and wear tester under dry friction conditions. It is found that the sulfidation concentration plays an important part in the tribological properties of the treated DLC films. The results showed the treated films with low sulfidation concentration have a lower friction coefficient (0.1) than the treated films with high sulfidation concentration (0.26) and the untreated films (0.27) under the same friction testing conditions, which can be attributed to both the presence of sulfur-containing materials and the forming of the mechanical alloyed layer on the wear surface. Adding the dry nitrogen to the sliding surface in the testing system helps the friction coefficient of the treated films with low sulfidation concentration to decrease to 0.04 further in this work. On the basis of the experimental results, it is indicated that the liquid sulfidation technique, which is low-cost, non-polluting and convenience, would be an appropriate method for the surface treatment of DLC films.  相似文献   

18.
利用光学成像系统观察到了磁旋转弧等离子体实验中的电弧电压突变现象,电弧电压突变的范围约在40~100V之间。实验结果表明,电弧电压的变化与电弧弧长的变化密切相关。  相似文献   

19.
Ti-doped hydrogenated diamond-like carbon (DLC) films were deposited on Si(1 0 0) substrates by a filtered cathodic vacuum arc (FCVA) method using Ar and CH4 as the feedstock. The composition and microstructure of the films were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and IR spectroscopy. The internal stress was determined by the radius of curvature technique. The influence of the bias voltage on the microstructure of the as-deposited films was investigated. It was found that the graphite-like bonds was dominated in the Ti-doped DLC film deposited at 0 V bias voltage. When bias voltage was increased to −150 V, more diamond-like bond were produced and the sp3 content in film reached the maximum value, after which it decreased and more graphite-like bonds feature produced with further increase of the negative bias voltage. The compressive internal in the Ti-doped DLC films also exhibited a maximum value at −150 V bias voltage. IR results indicated that CH bonded intensity reduced, and H atoms bonded with C atoms were substituted for the Ti atoms as the negative bias voltage increasing. All the composition and microstructure change can be explained by considering the plasma conditions and the effect of negative bias voltage applied to the substrate.  相似文献   

20.
《Current Applied Physics》2018,18(3):317-323
Generally, the repulsive force was a key factor account for superlow friction of H or F doped diamond-like carbon (DLC) films under high vacuum. As we known, H or F doped DLC usually exhibited superlow friction under high vacuum. However, the superlow friction of S doped DLC under high vacuum was not found so far. This phenomenon was desirable to be well investigated. In this work, S-terminated diamond interfaces also exhibited strong repulsive force, however, the estimated friction coefficient was variable for S-terminated diamond interfaces. The lowest and largest friction coefficient was about 0.003 and 0.4 respectively, which indicated that the superlow friction of S doped DLC could achieve in theory. In order to well probe the unusual friction behavior of S doped DLC under high vacuum, using first-principles method, the repulsive interaction between sliding surfaces was well investigated in order to understand the unusual friction behavior of S doped DLC films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号