首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, the electrochemistry of CuInSe2 and its compositional ingredients CuCl2, InCl3 and SeO2 in aqueous solution were investigated. Triethanolamine was added in the single-step electrodeposition of CuInSe2 from aqueous solution as the complexing agent in order to improve the crystallinity and uniformity of the layer. The stoichiometry, crystal structure and grain sizes of CuInSe2 thin films of various deposition conditions were compared. The deposition parameters such as the concentration of complexing agent, deposition potential, deposition time and annealing temperature are found to be important factors in the processes of electrical deposition of CuInSe2 thin films.  相似文献   

2.
Thin CuInSe2 films have been prepared by electrodeposition from a single bath aqueous solution on both dense and nanoporous TiO2. The films are deposited potentiostatically using a N2-purged electrolyte at different potentials. Various deposition times and solution compositions have been employed. The effect of annealing in air and in argon at different temperatures and times is also investigated. Thin films and nanocomposites of TiO2 and CuInSe2 have been studied with electron microscopy, X-ray diffraction, Raman spectroscopy, and optical absorption spectroscopy. After a thermal anneal in argon at 350 °C for 30 min excellent CuInSe2 is obtained. In particular the nominal crystal structure and the bandgap of 1.0 eV are found. Although pinholes are present occasionally, good samples with diode curves showing a rectification ratio of 24 at ±1 V are obtained. Upon irradiation with simulated solar light of 1000 W m−2 a clear photoconductivity response is observed. Furthermore, also some photovoltaic energy conversion is found in TiO2|CuInSe2 nanocomposites.  相似文献   

3.
Electrodeposition and growth mechanism of SnSe thin films   总被引:1,自引:0,他引:1  
Tin selenide (SnSe) thin films were electrochemically deposited onto Au(1 1 1) substrates from an aqueous solution containing SnCl2, Na2SeO3, and EDTA at room temperature (25 °C). The electrochemical behaviors and the codeposition potentials of Sn and Se were explored by cyclic voltammetry. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and UV-vis absorption spectroscopy were employed to characterize the thin films. When the electrodeposition potential increased, the Se content in the films decreased. It was found that the stoichiometric SnSe thin films could be obtained at −0.50 V. The as-deposited films were crystallized in the preferential orientation along the (1 1 1) plane. The morphologies of SnSe films could be changed from spherical grains to platelet-like particles as the deposition potential increases. The SEM investigations show that the film growth proceeds via nucleation, growth of film layer and formation of needle-like particles on the overlayer of the film. The optical absorption study showed the film has direct transition with band gap energy of 1.3 eV.  相似文献   

4.
Cluster assembled selenium oxide (SeO2) thin films, as a function of oxygen flow pressure (OFP) have been synthesized by a low energy cluster beam deposition (LECBD) technique. The OFP dependent surface morphology leading to well separated nanoclusters (size ranging from 50 to 200 nm) and fractal features are confirmed from transmission electron microscopic (TEM) measurements. A diffusion limited aggregation (DLA) mediated fractal growth with dimension as 1.71 ± 0.01 has been observed for high OFP (60 mbar). Structural analysis by glancing angle X-ray diffraction (GXRD) and selected area diffraction (SAD) studies identify the presence of tetragonal phase SeO2 in the deposit. Micro-Raman studies indicate the shifts in bending and stretching vibrational phonon modes in cluster assembled SeO2 as compared to their bulk counter part due to the phonon confinement effect.  相似文献   

5.
La-substituted BiFeO3, Bi0.8La0.2FeO3, thin films were fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. X-ray diffraction and high-resolution transmission electron microscope were used to analyze the structures of the films. The results show the films fabricated under optimized growth condition are (0 1 2) textured. X-ray photoemission spectroscopy results indicate that the oxidation state of Fe ion is Fe3+ in the films without detectable Fe2+. The films show low leakage current and excellent dielectric characters. Multiferroic properties with a remnant ferroelectric polarization of 5.2 μC/cm2 and a remanent magnetization of 0.02 μB/Fe were established. These results have some implications for further research.  相似文献   

6.
TiO2 and TiNxOy thin films grown by low pressure metal-organic chemical vapor deposition (LP-MOCVD) on top of Si(0 0 1) substrate were characterized by X-ray multiple diffraction. X-ray reflectivity analysis of TiO2[1 1 0] and TiNO[1 0 0] polycrystalline layers allowed to determine the growth rate (−80 Å/min) of TiO2 and (−40 Å/min) of TiNO films. X-ray multiple diffraction through the Renninger scans, i.e., ?-scans for (0 0 2)Si substrate primary reflection is used as a non-conventional method to obtain the substrate lattice parameter distortion due to the thin film conventional deposition, from where the information on film strain type is obtained.  相似文献   

7.
CuInS2 ternary films were prepared by a soft solution processing, i.e. successive ionic layer absorption and reaction (SILAR) method. The films were deposited on glass substrates at room temperature and heat-treated under Ar atmosphere at 500 °C for 1 h. CuCl2 and InCl3 mixed solutions with different ionic ratios ([Cu]/[In]) were used as cation precursor and Na2S as the anion precursor. The effect of the [Cu]/[In] ratio in precursor solution on the structural, chemical stoichiometry, topographical, optical and electrical properties of CuInS2 thin films was investigated. XPS results demonstrated that stoichiometric CuInS2 film can be obtained by adjusting [Cu]/[In] ratios in solution. Chalcopyrite structure of the film was confirmed by XRD analysis. The near stoichiometric CuInS2 film has the optical band gap Eg of 1.45 and resistivity decreased with increase of [Cu]/[In] ratios.  相似文献   

8.
Indium oxide (In2O3) has been widely used in sensors, solar cells and microelectronics. There are several techniques available for making In2O3 such as vapor, electrochemical and atomic layer deposition, which are not only expensive but also time consuming processes. In this study, an inexpensive and straightforward synthesis approach is being presented to make micron/submicron size single crystals as well as nanostructured adherent coatings of In2O3 using Indium Chloride (InCl3) powders and InCl3 solution precursor. Both the powders and the solution precursor were calcined in a furnace to obtain the crystals; however, the liquid precursor was also treated by a DC plasma jet to obtain the nanostructured coatings. The phase transformations during thermal decomposition of InCl3 powders and solution precursor were investigated via differential scanning calorimetry studies. The phase structure and crystallinity of the crystals and coatings were confirmed by X-ray diffraction. Microstructural characterization of the crystals and coatings was done by scanning electron microscopy, transmission electron microscopy and atomic force microscopy techniques. Size of the crystals was observed to be dependent on the heating schemes adapted during calcination. Solution precursor plasma sprayed In2O3 coatings showed porosity and ultrafine particulates with grain size ranging between 10 and 75 nm. Resistivity was determined to be ∼0.553 ± 0.337 kΩ cm. Optical transmittance of In2O3 coatings was ∼60-78% in the visible region and it was observed to decrease with increasing the number passes or the thickness of the coatings. Based on the optical transmission data, direct band gap of 3.57 eV was determined.  相似文献   

9.
Pentanary Cu(In,Ga)(Se,S)2 (CIGSS) thin films were deposited on soda-lime glass substrate by co-sputtering quaternary alloy, and In2S3 targets. In this study, we investigated the influence of post-annealing temperature on structural, compositional, electrical, and optical properties of CIGSS films. Our experimental results show that the CIGS quaternary target had chalcopyrite characteristics. All CIGSS films annealed above 733 K exhibited a polycrystalline tetragonal chalcopyrite structure, with (1 1 2) preferred orientation. The carrier concentration and resistivity of the resultant CIGSS layer annealed above 763 K was 4.86×1016 cm−3 and 32 Ω cm, respectively, and the optical band-gap of the CIGSS absorber layer was 1.18 eV. Raman spectral analysis demonstrated the existence of many different phases, including CuInSe2, CuGaSe2, and CuInS2. This may be because the vibration frequencies of In-Se, In-S bonds are similar to the Ga-Se and Ga-S bonds, causing their absorption bands overlap.  相似文献   

10.
The active catalysts for methane formation from the gas mixture of CO2 + 4H2 with almost 100% methane selectivity were prepared by reduction of the oxide mixture of NiO and ZrO2 prepared by calcination of aqueous ZrO2 sol with Sm(NO3)3 and Ni(NO3)2. The 50 at%Ni-50 at%(Zr-Sm oxide) catalyst consisting of 50 at%Ni-50 at%(Zr + Sm) with Zr/Sm = 5 calcined at 650 or 800 °C showed the highest activity for methanation. The active catalysts were Ni supported on tetragonal ZrO2, and the activity for methanation increased by an increase in inclusion of Sm3+ ions substituting Zr4+ ions in the tetragonal ZrO2 lattice as a result of an increase in calcination temperature. However, the increase in calcination temperature decreased BET surface area, metal dispersion and hydrogen uptake due to grain growth. Thus, the optimum calcination temperature existed.  相似文献   

11.
Tin oxide (SnO2) thin films were grown on Si (1 0 0) substrates using pulsed laser deposition (PLD) in O2 gas ambient (10 Pa) and at different substrate temperatures (RT, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). XRD measurements showed that the almost amorphous microstructure transformed into a polycrystalline SnO2 phase. The film deposited at 400 °C has the best crystalline properties, i.e. optimum growth conditions. However, the film grown at 300 °C has minimum average root mean square (RMS) roughness of 3.1 nm with average grain size of 6.958 nm. The thickness of the thin films determined by the ellipsometer data is also presented and discussed.  相似文献   

12.
C. Gatel  E. Snoeck 《Surface science》2007,601(4):1031-1039
We have studied the epitaxial growth of Au and Pt layers on Fe3O4(1 1 1) as a function of the deposition temperature and thickness. The layers were deposited by UHV sputtering and the structural properties were investigated by reflection high energy electron diffraction (RHEED), X-ray experiments and transmission electron microscopy (TEM). The epitaxial growth of both metals was obtained whatever the deposition conditions but the wetting is however different for the two metals. Comparison between the coverage ratios of Au and Pt is correlated with their surface and interfaces energies. The optimum conditions to achieve a 2D flat epitaxial metallic layer are determined.  相似文献   

13.
The chemical reactions during rapid thermal processing of stacked elemental layers were investigated by angle-dispersive in situ X-ray diffraction. With a time resolution of 5 diffractograms per minute four different solid state reactions resulting in ternary chalcopyrites were identified: (A) CuSe+InSe→CuInSe2, (B) Cu2Se+2InSe+Se→2CuInSe2, (C) Cu2Se+In2Se3→2CuInSe2, (D) Cu2Se+Ga2Se3→2CuGaSe2. All these reactions form pure tenary chalcopyrites. The reaction resulting in the mixed crystal Cu(In,Ga)Se2 starts not before (B) has begun. The reaction speed of (A) and the fraction of CuInSe2 formed by (B) depend on Na-doping and Se-pressure, (C) takes place only, if the reaction paths (A) and (B) are suppressed. Reaction (D) is observed only, if 25% In is replaced by Ga in the precursor. The diffractograms were evaluated by Rietveld refinement to give the phase contents of the samples as a function of reaction time.  相似文献   

14.
Bismuth sulfide (Bi2S3) films were chemically deposited by a novel deposition system in which ammonium citrate was used as the chelating reagent. Two sulfur source thioacetamide (TA) and sodium thiosulfate (Na2S2O3) were used to prepare Bi2S3 films. Both the as-prepared films have amorphous structure. However, annealing can improve the crystallization of the films. The composition of the films prepared by TA and Na2S2O3 are all deviate from the stoichiometric ratio of Bi2S3. The Bi2S3 films are all homogeneous and well adhered to the substrate. The optical properties of the Bi2S3 films are studied. The electrical resistivity of the as-prepared films are all around 7 × 103 Ω cm in dark, which decreases to around 1 × 10Ω cm under 100 mW/cm2 tungsten-halogen illumination. After the annealing, the dark resistivity of the Bi2S3 film prepared by TA decreases by four magnitudes. In contrast, the dark resistivity of the Bi2S3 film prepared by Na2S2O3 only decreases slightly.  相似文献   

15.
In the present work HCl-isopropanol treated and vacuum annealed InP(0 0 1) surfaces were studied by means of low-energy electron diffraction (LEED), soft X-ray photoemission (SXPS), and reflectance anisotropy (RAS) spectroscopies. The treatment removes the natural oxide and leaves on the surface a physisorbed overlayer containing InClx and phosphorus. Annealing at 230 °C induces desorption of InClx overlayer and reveals a P-rich (2 × 1) surface. Subsequent annealing at higher temperature induces In-rich (2 × 4) surface. The structural properties of chemically prepared InP(0 0 1) surfaces were found to be similar to those obtained by decapping of As/P-capped epitaxial layers.  相似文献   

16.
In the present work, we report the data about formation of TiO2-rutile or TiO2 and Mn2O3, Mn3O4 containing oxide structures on titanium in aqueous electrolytes by means of plasma-electrolytic deposition. The layers formed are characterized by X-ray diffraction, electron probe microanalysis and scanning electron microscopy methods. The PEO coatings on titanium formed in sodium tetraborate solution contain the TiO2 stabile rutile modification that is important when utilizing such a structure as a catalyst carrier. Manganese acetate adding into the electrolyte leads to formation of layers that contain Mn2O3, Mn3O4 and TiO2-rutile in outer region. The manganese content in the surface layer depends on the formation conditions as well as on manganese acetate concentration in the electrolyte. Catalytic activity of the layers in CO → CO2 reaction is studied in the static and flow conditions. The manganese-containing layers obtained possess the catalytic activity in CO → CO2 oxidation reaction at the temperature range of 250-350 °C. The catalytic activity depends on the concentration and surface distribution of manganese as well as on the layers morphology.  相似文献   

17.
Ta2O5 films were deposited on BK7 substrates by e-beam evaporation with different deposition parameters such as substrate temperature (323-623 K), oxygen pressure (0.5-3.0×10−2 Pa) and deposition rate (0.2-0.5 nm/s). Absorption, scattering and chemical composition were investigated by surface thermal lensing (STL) technique, total integrated scattering (TIS) measurement and X-ray photoelectron spectroscopy (XPS), respectively. The laser-induced damage threshold (LIDT) was assessed using pulsed Nd:YAG 1064 nm laser at a pulse length of 12 ns. The results showed that optical properties, absorption and LIDT were influenced by the deposition parameters and annealing. However, scattering was little correlated with the deposition parameters. On the whole, the LIDT increased with increasing substrate temperature and oxygen pressure, whereas it increased firstly and then decreased upon increasing deposition rate. After annealing at 673 K for 12 h, the LIDT of films improved significantly. The dependence of possible damage mechanism on deposition parameters was discussed.  相似文献   

18.
SrAl2O4:Eu2+,Dy3+ thin films were grown on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique to investigate the effect of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological, photoluminescence (PL) and cathodoluminescence (CL) properties of the films. The films were ablated using a 248 nm KrF excimer laser. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and fluorescence spectrophotometry were used to characterize the thin films. Auger electron spectroscopy (AES) combined with CL spectroscopy were employed for the surface characterization and electron-beam induced degradation of the films. Better PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres with respect to those prepared in vacuum. A stable green emission peak at 515 nm, attributed to 4f65d1→4f7 Eu2+ transitions were obtained with less intense peaks at 619 nm, which were attributed to transitions in Eu3+. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The CL intensity increased under prolonged electron bombardment during the removal of C due to electron stimulated surface chemical reactions (ESSCRs) on the surface of the SrAl2O4:Eu2+, Dy3+ thin films. The CL stabilized and stayed constant thereafter.  相似文献   

19.
We describe the structural properties and electrical characteristics of thin thulium oxide (Tm2O3) and thulium titanium oxide (Tm2Ti2O7) as gate dielectrics deposited on silicon substrates through reactive sputtering. The structural and morphological features of these films were explored by X-ray diffraction, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and atomic force microscopy, measurements. It is found that the Tm2Ti2O7 film annealed at 800 °C exhibited a thinner capacitance equivalent thickness of 19.8 Å, a lower interface trap density of 8.37 × 1011 eV−1 cm−2, and a smaller hysteresis voltage of ∼4 mV than the other conditions. We attribute this behavior to the Ti incorporated into the Tm2O3 film improving the interfacial layer and the surface roughness. This film also shows negligible degrees of charge trapping at high electric field stress.  相似文献   

20.
Au/TiO2/Ru(0 0 0 1) model catalysts and their interaction with CO were investigated by scanning tunneling microscopy and different surface spectroscopies. Thin titanium oxide films were prepared by Ti deposition on Ru(0 0 0 1) in an O2 atmosphere and subsequent annealing in O2. By optimizing the conditions for deposition and post-treatment, smooth films were obtained either as fully oxidized TiO2 or as partly reduced TiOx, depending on the preparation conditions. CO adsorbed molecularly on both oxidized and reduced TiO2, with slightly stronger bonding on the reduced films. Model catalyst surfaces were prepared by depositing submonolayer quantities of Au on the films and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. From X-ray photoelectron spectroscopy, a weak interaction between the Au and the TiO2 substrate was found. At 100 K CO adsorption occurred on both the TiO2 film and on the Au nanoparticles. CO desorbed from the Au particles with activation energies between 53 and 65 kJ/mol, depending on the Au coverage. If the Au deposit was annealed to 770 K prior to CO exposure, the CO adsorption energy decreased significantly. STM measurements revealed that the Au particles grow upon annealing, but are not encapsulated by TiOx suboxides. The higher CO adsorption energy observed for smaller Au coverages and before annealing is attributed to a significantly stronger interaction of CO with mono- and bilayer Au islands, while for higher particles, the adsorption energy becomes more bulk-like. The implications of these effects on the known particle size effects in CO oxidation over supported Au/TiO2 catalysts are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号