首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
S. Pal 《Applied Surface Science》2007,253(6):3317-3325
Tungsten oxide (WO3) thin films were deposited by a modified hot filament chemical vapor deposition (HFCVD) technique using Si (1 0 0) substrates. The substrate temperature was varied from room temperature to 430 °C at an interval of 100 °C. The influence of the substrate temperature on the structural and optical properties of the WO3 films was studied. X-ray diffraction and Raman spectra show that as substrate temperature increases the film tends to crystallize from the amorphous state and the surface roughness decreases sharply after 230 °C as confirmed from AFM image analysis. Also from the X-ray analysis it is evident that the substrate orientation plays a key role in growth. There is a sharp peak for samples on Si substrate due to texturing. The film thickness also decreases as substrate temperature increases. UV-vis spectra show that as substrate temperature increases the film property changes from metallic to insulating behavior due to changing stoichiometry, which was confirmed by XPS analysis.  相似文献   

2.
In this work the optical and the gas sensing properties of thick TiO2 waveguide films, produced by pulsed laser deposition, were investigated by m-line spectroscopy. The films were deposited on (0 0 1) SiO2 substrates at temperature of 100 °C. The thickness of the films was measured to be in the range from 650 to 1900 nm and the roughness increases from 5 to 14.6 nm. High quality mode spectra, consisted of thin and bright TE and TM modes, were observed in the films with thickness up to 1200 nm. All the films revealed anisotropic optical properties. Gas sensitivity of the films to CO2 was examined at room temperature on the basis of the variations of the refractive index. CO2 concentration of 3 × 104 ppm was detected, which corresponds to a refractive index variation of about 1 × 10−4. The crystal structure and the optical transmittance of the films were also presented and discussed.  相似文献   

3.
Yttrium trioxide (Y2O3) thin films have been deposited on silicon (1 1 1) substrates by RF magnetron sputtering. The influences of thermal exposure at high temperature in air on the structure, the surface morphology, roughness, and the refractive index of the Y2O3 thin film were investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM), and spectroscopic ellipsometry (SE). The results indicate that chemical composition of the as-deposited Y2O3 film is apparently close to the stoichiometric ratio, and it has a cubic polycrystalline structure but the crystallinity is poor. The monoclinic and cubic phases can coexist in the Y2O3 film after thermal exposure to 900 °C, and the monoclinic phase disappears completely after 300 s exposure to 950 °C. The changes of the surface morphology, roughness, and the refractive index of the Y2O3 film are closely related to the crystal structure, the internal stress, and various defects influenced by thermal exposure temperature and time.  相似文献   

4.
Tin oxide (SnO2) thin films were grown on Si (1 0 0) substrates using pulsed laser deposition (PLD) in O2 gas ambient (10 Pa) and at different substrate temperatures (RT, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). XRD measurements showed that the almost amorphous microstructure transformed into a polycrystalline SnO2 phase. The film deposited at 400 °C has the best crystalline properties, i.e. optimum growth conditions. However, the film grown at 300 °C has minimum average root mean square (RMS) roughness of 3.1 nm with average grain size of 6.958 nm. The thickness of the thin films determined by the ellipsometer data is also presented and discussed.  相似文献   

5.
We have grown lead iron niobate thin films with composition Pb(Fe1/2Nb1/2)O3 (PFN) on (0 0 1) SrTiO3 substrates by pulsed laser deposition. The influence of the deposition conditions on the phase purity was studied. Due to similar thermodynamic stability spaces, a pyrochlore phase often coexists with the PFN perovskite phase. By optimizing the kinetic parameters, we succeeded in identifying a deposition window which resulted in epitaxial perovskite-phase PFN thin films with no identifiable trace of impurity phases appearing in the X-ray diffractograms. PFN films having thicknesses between 20 and 200 nm were smooth and epitaxially oriented with the substrate and as demonstrated by RHEED streaks which were aligned with the substrate axes. X-ray diffraction showed that the films were completely c-axis oriented and of excellent crystalline quality with low mosaicity (X-ray rocking curve FWHM?0.09°). The surface roughness of thin films was also investigated by atomic force microscopy. The root-mean-square roughness varies between 0.9 nm for 50-nm-thick films to 16 nm for 100-nm-thick films. We also observe a correlation between grain size, surface roughness and film thickness.  相似文献   

6.
Uranium dioxide films were deposited on Si (1 1 1) substrates by dc magnetron sputtering method at different sputtering parameters. The structure, morphology and chemical state of the films were studied by field emission scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and atomic force microscopy. Influences of film thickness on the microstructure and optical properties were investigated. Experimental results show that the film crystallites are preferentially oriented with the (1 1 1) planes. The average grain size increases with increasing film thickness. AFM images show that the root mean square roughness of the films is between 1.2 nm and 2.1 nm. Optical constants (refractive index, extinction coefficient) of the films in the wavelength range of 350-1000 nm are obtained by ellipsometric spectroscopy. The result shows that the refractive index decreases with the increasing film thickness, while extinction coefficient increases with the film thickness.  相似文献   

7.
We report on the structural and optical properties of yttria stabilized zirconia (YSZ) thin films grown by pulsed laser deposition (PLD) technique and in situ crystallized at different substrate temperatures (Ts = 400 °C, 500 °C and 600 °C). Yttria-stabilized zirconia target of ∼1 in. diameter (∼95% density) was fabricated by solid state reaction method for thin film deposition by PLD. The YSZ thin films were grown on an optically polished quartz substrates and the deposition time was 30 min for all the films. XRD analysis shows cubic crystalline phase of YSZ films with preferred orientation along 〈1 1 1〉. The surface roughness was determined by AFM for the films deposited at different substrate temperatures. The nano-sized surface roughness is found to increase with the increase of deposition temperatures. For the optical analysis, a UV-vis-NIR spectrophotometer was used and the optical band gap of ∼5.7 eV was calculated from transmittance curves.  相似文献   

8.
Magnesium films of various thicknesses were first deposited on silicon (1 1 1) substrates by magnetron sputtering method and then annealed in annealing furnace filled with argon gas. The effects of the magnesium film thickness and the annealing temperature on the formation of Mg2Si films were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The Mg2Si thin films thus obtained were found to be polycrystalline and the Mg2Si (2 2 0) orientation is preferred regardless of the magnesium film thickness and annealing temperature. XRD results indicate that high quality magnesium silicide films are produced if the magnesium/silicon samples are annealed at 400 °C for 5 h. Otherwise, the synthesized films annealed at annealing temperatures lower than 350 °C or higher than 450 °C contain magnesium crystallites or magnesium oxide. SEM images have revealed that microstructure grains in the polycrystalline films are about 1-5 μm in dimensions, and the texture of the Mg2Si films becomes denser and more homogeneous as the thickness of the magnesium film increases.  相似文献   

9.
Optically transparent Al2O3 films has been synthesized, on quartz substrates at 500, 600 and 700 °C, from 0.02 M aluminum acetyl acetonate (Al(acac)3) in ethanol, by using ultrasonic spray pyrolysis technique. The films synthesized at 500, 600 and 700 °C are amorphous having average particle sizes 27 ± 6, 18 ± 3 and 14 ± 3, respectively. The films are found to be 95% optically transparent in the visible region. The optical transparency of the films in the ultraviolet region is found to increase with increase in deposition temperature. The observed increase in optical band gap and decrease in refractive index is attributed to the decrease in particle size with increase in deposition temperature. The stoichiometry and chemical bonding of the amorphous film studied using XPS and FTIR spectroscopy revealed the presence chemisorbed oxygen.  相似文献   

10.
ZnO nanocrystalline films have been prepared on Si(1 0 0) substrate using direct current (D.C) magnetron sputtering technique at room temperature. The thickness of nanocrystalline films almost linearly increased with deposition duration and the sizes of crystalline grains almost kept unchanged. After deposition, thermal annealing was performed at 800 °C in atmosphere for 2 h in order to improve the qualities of ZnO thin films. Scanning electron microscope (SEM) images showed the surface roughness of the films less than 45 nm. X-ray diffraction (XRD) patterns revealed the slight evolution of the crystal structures. Raman scattering spectra confirmed the data obtained from X-ray diffraction measurements.With these ZnO nanocrystalline films, prototypic gas sensors were fabricated. Both sensitivity and response of the sensors to different gases (H2 and CH4) were investigated. A quick response of time, less than 1 second to CH4 gas sensor has been achieved.  相似文献   

11.
We report on the growth of terbium iron garnet (TbIG, Tb3Fe5O12) thin films having anomalously large coercivity and in-plane easy axis of magnetization. The TbIG thin films were prepared at room temperature (RT) on Pt/Si(1 0 0) substrates by pulsed laser deposition technique. The films deposited at RT were X-ray amorphous and do not show any magnetic order. Annealing of the RT deposited film at 900 °C resulted into fully textured (532) TbIG film. Atomic force microscopy and cross-sectional scanning electron microscopy studies of the TbIG films showed good surface quality with an average surface roughness of 5.0 nm and thickness of about 300 nm, respectively. The M-H loops measured at 20 K for TbIG films, exhibit about an order of magnitude enhancement in the coercivity value (Hc) than the single crystal. In-plane and out-of-plane M-H loops revealed that the easy axis of the magnetization lies within the film’s plane. In-plane magnetization combining with large Hc value of the TbIG thin film may be of scientific interest for the possible applications.  相似文献   

12.
Ultra thin platinum films were grown by dc magnetron sputtering on thermally oxidized Si (1 0 0) substrates. The electrical resistance of the films was monitored in situ during growth. The coalescence thickness was determined for various growth temperatures and found to increase from 1.1 nm for films grown at room temperature to 3.3 nm for films grown at 400 °C. A continuous film was formed at a thickness of 2.9 nm at room temperature and 7.5 nm at 400 °C. The room temperature electrical resistivity decreases with increased growth temperature, while the in-plain grain size and the surface roughness, measured with a scanning tunneling microscope (STM), increase. Furthermore, the temperature dependence of the film electrical resistance was explored at various stages during growth.  相似文献   

13.
In this work, we report the effect of substrate, film thickness and sputter pressure on the phase transformation and electrical resistivity in tantalum (Ta) films. The films were grown on Si(1 0 0) substrates with native oxides in place and glass substrates by varying the film thickness (t) and pressure of the working gas (pAr). X-ray diffraction (XRD) analysis showed that the formation of α and β phases in Ta films strongly depend on the choice of substrate, film thickness t and sputter pressure pAr. A stable α-phase was observed on Si(1 0 0) substrates for t ≤ 200 nm. Both α and β phases were found to grow on glass substrates at all thicknesses except t = 100 nm. All the films grown on Si(1 0 0) substrates for pAr ≤ 6.5 mTorr had α-phase with strong (1 1 0) texture normal to the film plane. The glass substrates promoted the formation of β-phase in all pAr except pAr = 5.5 mTorr. The resistivity ρ was observed to decrease with t, whereas ρ was increased with pAr on Si(1 0 0) substrates. In all films, the measured resistivity ρ was greater than the bulk resistivity. The resistivity ρ was influenced by the effects of surface roughness and grain size.  相似文献   

14.
La-doped HfO2 gate dielectric thin films have been deposited on Si substrates using La(acac)3 and Hf(acac)4 (acac = 2,4-pentanedionate) mixing sources by low-pressure metal-organic chemical vapor deposition (MOCVD). The structure, thermal stability, and electrical properties of La-doped HfO2 films have been investigated. Inductive coupled plasma analyses confirm that the La content ranging from 1 to 5 mol% is involved in the films. The films show smaller roughness of ∼0.5 nm and improved thermal stability up to 750 °C. The La-doped HfO2 films on Pt-coated Si and fused quartz substrates have an intrinsic dielectric constant of ∼28 at 1 MHz and a band gap of 5.6 eV, respectively. X-ray photoelectron spectroscopy analyses reveal that the interfacial layer is Hf-based silicate. The reliable value of equivalent oxide thickness (EOT) around 1.2 nm has been obtained, but with a large leakage current density of 3 A/cm2 at Vg = 1V + Vfb. MOCVD-derived La-doped HfO2 is demonstrated to be a potential high-k gate dielectric film for next generation metal oxide semiconductor field effect transistor applications.  相似文献   

15.
Results of experimental studies of the influence of substrate preparation on the surface chemistry and surface morphology of the laser-assisted chemical vapour deposition (L-CVD) SnO2 thin films are presented in this paper. The native Si(1 0 0) substrate cleaned by UHV thermal annealing (TA) as well as thermally oxidized Si(1 0 0) substrate cleaned by ion bombardment (IBA) have been used as the substrates. X-ray photoemission spectroscopy (XPS) has been used for the control of surface chemistry of the substrates as well as of deposited films. Atomic force microscopy (AFM) has been used to control the surface morphology of the L-CVD SnO2 thin films deposited on differently prepared substrates. Our XPS shows that the L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit the same stoichiometry, i.e. ratio [O]/[Sn] = 1.30 as that of the layers deposited on Si(1 0 0) substrate previously cleaned by UHV prolonged heating. AFM shows that L-CVD SnO2 thin films deposited on thermally oxidized Si(1 0 0) substrate after cleaning with ion bombardment exhibit evidently increasing rough surface topography with respect to roughness, grain size range and maximum grain height as the L-CVD SnO2 thin films deposited on atomically clean Si substrate at the same surface chemistry (nonstoichiometry) reflect the higher substrate roughness after cleaning with ion bombardment.  相似文献   

16.
Lead-free ferroelectric K0.5Na0.5NbO3 (KNN) thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition process. The structures, crystal orientations and electrical properties of thin films have been investigated as a function of deposition temperature from 680 °C to 760 °C. It is found that the deposition temperature plays an important role in the structures, crystal orientations and electrical properties of thin films. The crystallization of thin films improves with increasing deposition temperature. The thin film deposited at 760 °C exhibits strong (0 0 1) preferential orientation, large dielectric constant of 930 and the remnant polarization of 8.54 μC/cm2.  相似文献   

17.
Ba(Zr0.05Ti0.95)O3 (BZT) thin films grown on Pt/Ti/SiO2/Si(1 0 0) substrates were prepared by chemical solution deposition. The structural and surface morphology of BZT thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results showed that the random oriented BZT thin film grown on Pt/Ti/SiO2/Si(1 0 0) substrate with a perovskite phase. The SEM surface image showed that the BZT thin film was crack-free. And the average grain size and thickness of the BZT film are 35 and 400 nm, respectively. Furthermore, the chemical states and chemical composition of the films were determined by X-ray photoelectron spectroscopy (XPS) near the surface. The XPS results show that Ba, Ti, and Zr exist mainly in the forms of BZT perovskite structure.  相似文献   

18.
Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10−6 mbar in the temperature range from 400 to 800 °C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J × cm−2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated.Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature.  相似文献   

19.
TiO2, which is high in refractive index and dielectric constant, plays an important role in the fields of optics and electronics. In this work, TiO2 films were prepared on glass substrates by the technique of ion beam assisted electron beam evaporation. The films were deposited at 50, 150 and 300 °C, respectively. Then the as-deposited TiO2 films were annealed at 450 °C for 1 h in vacuum atmosphere. Structures and optical properties of TiO2 films were characterized by XRD, SEM, ellipsometry and spectrophotometer. As a result, the structure and the refractive index of films were improved by both the annealing and the increasing of the deposition temperature. The UV-vis transmittance spectra also confirmed that the deposition temperature has a significant effect on the transparency of the thin films. The highest transparency over the visible wavelength region of spectra was obtained at the deposition temperature of 300 °C. The allowed direct band gap at the deposition temperature ranging from 50 to 300 °C was estimated to be in the range from 3.81 to 3.92 eV.  相似文献   

20.
Ethylene glycol solutions of La-Mn(II) and La-Ca-Mn(II) citric complexes has been used as a starting material for spray-pyrolysis deposition of LaMnO3 and La1−xCaxMnO3 thin films on β-quartz, fused quartz, Si(0 0 1) and SrTiO3(1 0 0) substrates heated during the deposition at 380 °C. At suitable post-deposition heating conditions highly uniform films, 0.1-1 μm in thickness, with good crystal structure were obtained. Highly textured LaMnO3 films are obtained on SrTiO3(1 0 0) substrate. Interaction between the layer and Si-containing substrates is observed during the post-deposition heating in static air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号