首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen cyanide (HCN) aqueous solutions can remove copper contaminants from Si surfaces more effectively than hydrochloric acid/hydrogen peroxide mixture (HPM) and sulfuric acid/hydrogen peroxide mixture (SPM). When pH of the HCN solutions is adjusted at 9, Si surface morphology is not changed, while when pH exceeds 10, the Si surfaces are considerably roughed. AFM measurements show that Cu contaminants are present in the form of particles on the bare Si surfaces. XPS measurements show that the particles consist of metallic Cu. The Cu particle height decreases almost linearly with the cleaning time, and the Cu surface concentration decreases exponentially with it. It is concluded that Cu particles gradually dissolve into the HCN aqueous solutions by the direct reaction with cyanide ions at the surface of the Cu particles.  相似文献   

2.
X-ray photoelectron spectroscopy (XPS) has been used to investigate the changes in surface composition of three steels as they have undergone heating. The steels were mild steel, and two austenitic stainless steels, commonly designated 304 and 316 stainless steels. XPS measurements were made on the untreated samples, and then following heating for 30 min in vacuo and in a 1 × 10−6 Torr partial pressure of air, at temperatures between 100 °C and 600 °C.Mild steel behaves differently to the two stainless steels under the heating conditions. In mild steel the iron content of the surface increased, with oxygen and carbon decreasing, as a function of increasing temperature. The chemical state of the iron also changed from oxide at low temperatures, to metallic at temperatures above 450 °C.In both stainless steels the amount of iron present in the surface decreased with increasing temperature. The decrease in iron at the surface was accompanied by an increase in the amount of chromium at the steel surface. At temperatures above 450 °C the iron in both 304 and 316 stainless steels showed significant contributions from metallic iron, whilst the chromium present was in an oxide state. In 316 stainless steel heated to 600 °C there was some metallic chromium present in the surface layer.The surfaces heated in air showed the least variation in composition, with the major change being the loss of carbon from the surfaces following heating above 300 °C. There was also a minor increase in the concentration of chromium present on both the stainless steels heated under these conditions. There was also little change in the oxidation state of the iron and chromium present on the surface of these steels. There was some evidence of the thickening of the surface oxides as seen by the loss of the lower binding energy signal in the iron or chromium core level scans.The surfaces heated in vacuum showed a similar trend in the concentration of carbon on the surfaces, however the overall concentration of oxygen decreased throughout the heating of these steels. There were also significant changes in the oxidation state of the iron and chromium on these surfaces with significant amounts or iron and chromium present in the metallic form following heating up to 600 °C.It appears that the carbon contamination on the surfaces plays an important role in the fate of the surface oxide layer for all of the steels heated in a vacuum environment.  相似文献   

3.
A ‘cap and dip’ method of adsorbing ruthenium di-2,2′-bipyridyl-4,4′-dicarboxylic acid diisocyanate (N3 dye) on a rutile TiO2 (110) surface was investigated using pyrocatechol as a capping molecule. This method involves cleaning the rutile surface in ultra-high vacuum (UHV), depositing pyrocatechol onto the surface to ‘cap’ the adsorption sites, removing from vacuum, ‘dipping’ in an N3 dye solution and returning to vacuum. Photoemission measurements following the return of the crystal to vacuum suggest that the pyrocatechol keeps the surface free from contamination on exposure to atmosphere. Photoemission spectra also indicate that the pyrocatechol capping molecules are replaced by the N3 dye in solution and that the N3 dye is adsorbed intact on the rutile TiO2 (110) surface. This technique may allow other large molecules, which are thermally unstable to evaporation in UHV, to be easily deposited onto TiO2 surfaces.  相似文献   

4.
Catalysts composed of nickel and promoted with different metal oxides proved to be suitable for H/D isotropic exchange between hydrogen and water vapour. They loss their activity due to water condensation on their surfaces. Several nickel/chromium oxide/zirconium oxide catalysts of different composition were prepared by the coprecipitation technique. The liquid phase activity of these catalysts were followed using the hydrogen peroxide decomposition on their surfaces at different temperatures. The surface characteristics of the examined catalysts were followed by applying the BET method. The results were discussed and lead to the required catalyst composition which resists the water condensation on its surface during operation and has relatively high activity in the vapour phase H/D isotopic exchange reaction between hydrogen and water.  相似文献   

5.
The surface-cleaning effect of metals was investigated using KrF-excimer-laser irradiation of metal surfaces in air. The laser-induced cleaning of copper, stainless steel and aluminum surfaces was studied. It is found that laser cleaning is an effective cleaning process for metals even if the metal surfaces are heavily contaminated. It is also found that short wavelength and pulse duration are necessary for laser surface-cleaning. The energy density of the laser pulse is an important parameter in the cleaning process. Low energy density results in a cleaner surface but a larger pulse number is required, whereas high energy density can achieve higher cleaning efficiency but the temperature rise can cause surface oxidation and secondary contamination. In contrast to the KrF-excimer-laser, the pulsed CO2 laser is not effective in surface-cleaning. The mechanisms of laser cleaning may include laser photodecomposition, laser ablation and surface vibration due to the impact of the laser pulse. Laser cleaning provides a new dry process to clean different substrate surfaces and can replace the conventional wet cleaning processes such as ultrasonic cleaning with CFC and other organic solvents.  相似文献   

6.
Ti-6Al-4V alloy was treated with various concentrations (5 wt.%, 15 wt.% and 25 wt.%) of hydrogen peroxide (H2O2) and then heat treated to produce an anatase titania layer. The surface modified substrates were immersed in simulated body fluid (SBF) solution for the growth of an apatite layer on the surface and the formed apatite layer was characterized using various surface characterization techniques. The results revealed that titania layer with anatase nature was observed for all H2O2 treated Ti-6Al-4V alloy, irrespective of the H2O2 concentrations. Ti-6Al-4V alloy treated with 15 wt.% and 25 wt.% of H2O2 induced apatite formation, however 5 wt.% of H2O2 treated Ti-6Al-4V failed to form apatite layer on the surface. The electrochemical behaviour of H2O2 treated specimens in SBF solution was studied using potentiodynamic polarization and electrochemical impedance spectroscopy. Ti-6Al-4V alloy treated with 25 wt.% of H2O2 solution exhibited low current density and high charge transfer resistance values compared to specimens treated with other concentrations of H2O2 and untreated Ti-6Al-4V alloy.  相似文献   

7.
X-ray photoelectron spectroscopy (XPS) has been used to evaluate the reactivity of different chemical cleaning procedures on the surface of archaeological glasses. Investigations were performed on a series of Roman glass samples coming from Sicilian excavations. The ancient freshly fractured glass samples were subjected to different cleaning protocols such as piranha solution (solution of sulphuric acid and hydrogen peroxide) and EDTA/ammonia and citric acid/ammonia solutions at different pH values. The atomic concentrations of alkaline and alkaline-earth ions, measured using XPS spectra acquired at the surface of all the samples, revealed that, in acid solution, the reactivities of the EDTA and citric acid solutions were higher than that of the piranha solution. Moreover, in alkaline conditions, the reactivities of the chelating agent/ammonia solutions seem to be very high and effective in taking out alkaline and alkaline-earth ions and in destroying the external glassy structure with the formation of a silica gel thin film. PACS  61.43.Fs; 81.65.Cf; 61.66.Fn; 82.80.Pv  相似文献   

8.
Existing techniques for the preparation of silica structures from diatom cells include cleaning of frustules through baking at high temperature and oxidant cleaning using concentrated sulfuric acid, hydrogen peroxide, nitric acid, or sodium dodecyl sulfate (SDS)/ethylenediaminetetraacetic acid (EDTA). In this study, sono-Fenton (SF) process was examined to prepare nanoporous silica through cleaning diatom frustules, while preserving their structural features. Single colonies of Cyclotella sp. were cultivated in batch mode f/2-enriched seawater. Combination of Fenton process with ultrasonication was found to be more efficient than the sum of individual processes in the removal of organic compounds from Cyclotella sp. structure. The optimized amounts of operational parameters were determined as suspension pH of 3, diatom cell density of 4.8 × 105 cell mL−1, H2O2 concentration of 60 mM, Fe2+ concentration of 15 mM, ultrasound irradiation power of 400 W and the temperature of 45 °C. The results of energy-dispersive X-ray spectroscopy (EDX) and thermal gravimetry (TG) analyses proved that organic materials covering the cell wall were significantly removed from the frustules through SF process. Scanning electron microscopy (SEM) images showed that after SF treatment, silica nanostructures were produced having uniform pores less than 15 nm in diameter. N2 adsorption–desorption isotherms demonstrated that almost non-porous structure of diatom frustules became mesoporous during removing the organic matrix. Lipids, amino acids, carbohydrates and organic acids or their oxidized products were identified using GC–MS analysis as the main organic compounds released from diatom cells to the solution after SF treatment. Treated frustules exhibited adsorption capability of 91.2 mg/g for Methylene Blue, which was almost 2.5 times higher than that of untreated frustules (34.8 mg/g).  相似文献   

9.
王晓晖  高频  王洪刚  李飙  常本康 《中国物理 B》2013,22(2):27901-027901
GaN samples 1-3 are cleaned by a 2:2:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%) to de-ionized water;hydrochloric acid(37%);or a 4:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%).The samples are activated by Cs/O after the same annealing process.X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows:sample 1 has the largest proportion of Ga,N,and O among the three samples,while its C content is the lowest.After activation the quantum efficiency curves show sample 1 has the best photocathode performance.We think the wet chemical cleaning method is a process which will mainly remove C contamination.  相似文献   

10.
Removal of a thin oxide layer from a tungsten ribbon and ThO2 particulates from zircaloy surface was achieved using a pulsed Nd:YAG laser. The removal mechanism of the oxide layer from the tungsten ribbon was identified as spallation or sublimation depending on the wavelength and fluence of the coherent radiation. The oxidized and cleaned surfaces were analysed by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS) and atomic force microscopy (AFM). Laser-cleaned tungsten ribbons were used in a thermal ionization mass spectrometer (TIMS) to determine isotopic composition of neodymium atoms. The fundamental (1064 nm) and the third harmonic (355 nm) radiations were found to be the most effective in removing ThO2 particulates from the zircaloy surface. Decontamination efficiency was found to be critically dependent on the wavelength of the coherent radiation and number of exposures. The mechanism of cleaning of ThO2 particulates from the zircaloy surface at different wavelengths of the incident radiation has been explained qualitatively.  相似文献   

11.
Titanium and its alloys are widely used for orthopedic and dental implants because of their superior mechanical properties, low modulus, excellent corrosion resistance and good biocompatibility. However, it takes several months for titanium implants and bone tissue to reach integration. Hence, there is growing interest in shortening the process of osseointegration and thereby reducing surgical restrictions. Various surface modifications have been applied to form a bioactive titanium oxide layer on the metal surface, which is known to accelerate osseointegration.The present work shows that titanium dioxide (TiO2) layers formed on titanium substrates by etching in a solution of sodium hydroxide (NaOH) or hydrogen peroxide/phosphoric acid (H3PO4/H2O2, with a volume ratio of 1:1) are highly suitable pre-treatments for apatite-like coating deposition. Using a two-step procedure (etching in an alkaline or acidic solution followed by soaking in Hanks’ medium), biomimetic calcium phosphate coatings were deposited on porous TiO2 layers. The combined effects of surface topography and chemistry on the formation of the calcium phosphate layer are presented. The topography of the TiO2 layers was characterized using HR-SEM and AFM techniques. The nucleation and growth of calcium phosphate (Ca-P) coatings deposited on TiO2 porous layers from Hanks’ solution was investigated using HR-SEM microscopy. AES, XPS and FTIR surface analytical techniques were used to characterize the titanium dioxide layers before and after deposition of the calcium phosphate coatings, as well as after the process of protein adsorption. To evaluate the potential use of such materials for biomedical applications, the adsorption of serum albumin, the most abundant protein in the blood, was studied on such surfaces.  相似文献   

12.
采用HPM溶液(盐酸、双氧水和去离子水的混合液)结合氧等离子体对多层介质膜脉宽压缩光栅进行清洗研究。用X射线光电子能谱检测光栅表面的元素成分及其原子含量的变化。实验结果表明,氧等离子体处理能有效去除光栅表面残留光刻胶和碳氟化合物; 再经HPM溶液清洗,反应离子束刻蚀和氧等离子体处理过程产生的金属污染物被进一步去除。经过上述清洗工艺处理后,光栅一级衍射效率仍保持在95%以上,光栅表面激光诱导损伤阈值达到1.6 J/cm2 (1053 nm, 10 ps)。实验结果说明了氧等离子体和HPM溶液相结合能有效清洗多层介质膜脉宽压缩光栅,并显著提高光栅损伤阈值。  相似文献   

13.
We combine a simple model potential with closed-orbit theory to study the photodetachment of H? near a dielectric-covered metal surface. We calculate photodetachment cross sections to show that the chemisorption of a dielectric thin layer on the metal surface can significantly affect the photodetachment of negative ions. Compared to the photodetachment of hydrogen negative ions near clean metallic surfaces, our calculated cross sections show stronger oscillations, the amplitude of the oscillation growing with the layer thickness. For fixed thickness, the amplitude depends on the dielectric constant and on the metallic surface. We expect our study to guide future experimental studies of negative-ion photodetachment from dielectric-covered metallic surfaces.  相似文献   

14.
Epoxy resins made from vegetable oils are an alternative to synthesize epoxy resins from renewable sources. Tung oil is rich in α -eleostearic fatty acid, which contains three double bonds producing epoxy resins with up to three epoxy groups per fatty acid. This work studied the production of tung oil epoxy resin using hydrogen peroxide as an oxidizing agent and acetic and formic acid as percarboxylic acid precursors, applying low frequency high power ultrasound. This study evaluated the effects of ultrasound power density, hydrogen peroxide concentration, acetic acid concentration, and formic acid concentration on the yield into epoxy resin, selectivity, and by-products formation. Application of ultrasound was carried out using a 19 kHz probe ultrasound (horn ultrasound) with a 1.3 cm diameter titanium probe, 500 W nominal power, 2940 W L−1 maximum effective power density applied to the reaction mixture. Ultrasound technology yielded up to 85% of epoxy resin in 3 h of reaction. The use of formic acid resulted in a slightly lower oil conversion than acetic acid but with a much higher selectivity towards epoxidized tung oil. However, using acetic acid resulted in the production of high-value by-products, such as 2-heptenal and 2,4-nonadienal. The ultrasound-assisted epoxidation showed to be particularly efficient when applied to oils containing conjugated double-bonds.  相似文献   

15.
电镀法制备微型金柱腔表面质量控制   总被引:1,自引:1,他引:0       下载免费PDF全文
为了提高金柱腔表面质量,借助扫描电子显微镜及其附带的能量色散谱(EDS),3维视频显微镜(SEM)等现代微观形貌观测手段和成分分析手段,通过单因素实验,分析了金柱腔缺陷形貌和组成以及缺陷产生的原因。探索了电流密度、金属杂质、有机污染物、预镀工艺及基底材质对镀层质量的影响,并对其作用机理进行了探讨。实验结果表明:对麻点和节瘤等缺陷抑制作用明显的工艺参数为,金质量浓度13~22 g/L时,电流密度的最佳范围为2.4~3.2 mA/cm2;金质量浓度5~13 g/L时,最佳范围为2.0~2.6 mA/cm2;大电流冲击时间不超过1 min;镀液无有机杂质污染;芯轴无钝化。  相似文献   

16.
Micrometer-size crystals are observed to grow spontaneously on chemically etched MnAs surfaces. The wet chemical etching leaves a nearly exclusive pile of amorphous arsenic on the surface when the MnAs layer is etched incompletely. Using Raman spectroscopy, we identify that these micro-crystals are the arsenolite crystal of arsenic oxides. The manganese in the MnAs layer is oxidized by the hydrogen peroxide in the etch solution to MnO2, which then works as the catalyst for the rapid oxidation and crystallization of the amorphous arsenic. Received: 14 November 2002 / Accepted: 18 November 2002 / Published online: 29 January 2003 RID="*" ID="*"Corresponding author. Fax: +49-30/20377-515, E-mail: takagaki@pdi-berlin.de  相似文献   

17.
Several properties of metallic foams such as their low density, high mechanical strength and good coefficients of heat and mass transfer make them attractive for applications in catalysis. Important modifications in the composition and morphology of the metallic foam surfaces can take place when they are submitted to treatments at high temperatures. These surface changes are due to the migration of some elements from the metallic core to the pore surface, thus inducing a passivation via an oxide layer formation. This new layer avoids further metallic segregation and generates a surface roughness, both effects having a significant impact on the catalytic coating quality. This work analyzes the effects of calcination temperature and time on the chemistry and morphology of the metallic surface corresponding to the AISI 314 stainless steel foams of 50 and 60 ppi. The chemical and morphological surface changes were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray (EDX) analysis and Laser Raman Spectroscopy (LRS). The application of high temperature treatments on AISI 314 foams promotes the formation of a surface layer containing chromium oxide and spinel-type compounds of chromium, iron and manganese. The optimum treatment temperature for this type of structures seems to be 900 °C because both the adhesion and thickness of the layer formed are adequate. For the sample with smaller pores (60 ppi) the optimal treatment time is close to 2 h and for that with larger pores (50 ppi) the recommended time is 20 h. Under these conditions, a compromise is found between adhesion, thickness and surface roughness, suitable for the subsequent deposition of catalytic material.  相似文献   

18.
For high-speed metal surface cleaning, we applied TEA CO2 laser pulses to ablate painted materials on metal surfaces and examined the efficiency of removal under different surface and irradiation conditions. Surfaces treated with a line-focused laser beam were analyzed with an energy dispersive X-ray analyzer and inspected with optical microscopic observation. Although paints were selectively ablated from the metal surface, the cleaning efficiency was found to depend on surface conditions of substrates. An application of a small amount of dimethyl formamide was effective for completely removing of resin without scorching the surface.  相似文献   

19.
《Solid State Ionics》2006,177(37-38):3315-3321
NiO-Ce0.8Sm0.2O1.9 (SDC) composite particles were synthesized by spray pyrolysis method using the starting solutions containing the components for NiO-SDC and various amounts of nitric acid or acetic acid. It was found that the particles had the smooth surface due to the presence of the dissociated acetic acid in the starting solution and the large specific surface area due to the presence of the nitrate ion in the starting solution. SOFC single cell performance using the composite particles for an anode was examined at the operating temperature of 750 °C to clarify the relationship between particle morphology and cell performance. The NiO-SDC composite particles which had smooth surfaces with large specific surface areas gave reproducibly high SOFC performances. It was considered that the morphologies and the specific surface areas of NiO-SDC composite particles played an important role of realizing a high performance anode.  相似文献   

20.
The objective of this study is to investigate how the surface characteristics of indium phosphide (InP) can be modified through the use of atomic hydrogen (H*) cleaning and silicon interfacial control layers (Si ICL), prior to the deposition of MgO dielectric layers. X-ray photoelectron spectroscopy (XPS) analysis shows that the InP native oxide can be successfully removed using atomic hydrogen cleaning at a substrate temperature of 300 °C. However, atomic force microscopy (AFM) images display evidence for the growth of metallic In island features after H* cleaning, and subsequent deposition of MgO thin films on the H* cleaned surface resulted in high levels of interfacial indium oxide growth. It has also been shown that the deposition of thin (∼1 nm) Si layers on InP native oxide surfaces results in the transfer of oxygen from the InP substrate to the Si ICL and the formation of Si-InP bonds. XPS analysis indicates that MgO deposition and subsequent 500 °C annealing results in further oxidation of the Si layer. However, no evidence for the re-growth of interfacial In or P oxide species was observed, in contrast to observations on the H* cleaned surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号