首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Ag:ZnO/SiO_2复合薄膜的制备与光学性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用溶胶-凝胶法在玻璃衬底上制备Ag掺杂于ZnO层的Ag:ZnO/SiO2(AZSO)复合薄膜,采用XRD、SEM、UV-Vis和PL谱等手段对样品的晶体结构、微观形貌、透过率、吸收率及光致发光性能等进行表征,并观察了掺Ag量对复合薄膜光学性能的影响。XRD结果表明:样品经300℃退火处理后出现ZnO及单质Ag衍射峰;由SEM结果可观察到AZSO复合薄膜颗粒分散均匀,表面致密,其断面照片显示了薄膜的双层结构。UV-Vis吸收光谱结果表明:随着复合薄膜中Ag含量的增加,Ag与ZnO之间的电子转移及Ag颗粒的变大促使Ag的特征吸收峰呈现红移和宽化,样品的透过率也随之降低,吸收边向短波长方向移动,禁带宽度减小。PL谱结果表明:由于Ag的掺入减少了ZnO内空穴浓度并对复合薄膜的结构缺陷进行补偿,以及Ag在440nm附近的特征吸收,降低了复合薄膜的发光强度。  相似文献   

2.
Dysprosium (Dy) doped ZnO nanosheets and nanorods were synthesized by hydrothermal method. Effects of Cu doping, morphology and annealing in Oxygen ambient on structural and optical properties of ZnO nanostructures were investigated using X–ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectra (DRS) and photoluminescence (PL) spectroscopy. This study recommends that both of intrinsic and extrinsic defects facilitate energy transfer (ET) from the ZnO host to Dy3+ ions and consequently have an effective role on producing intense Dy emissions at indirect excitation. The results also revealed that annealing process improved the crystal structure of ZnO nanorods due to decrease of surface; however decreased ET and Dy emissions because of diminishing in oxygen vacancy. In addition, as a result of increasing of surface area in nanorods compared to nanosheets, the oxygen vacancies and ET were enhanced. Moreover the results exhibited that electrical and optical properties of ZnO:Dy can be tuned by various amount of Dy concentrations and also Cu doping.  相似文献   

3.
Undoped and Mn-doped ZnO samples with different percentages of Mn content (1, 5 and 10?at%) were synthesized by a dip-coating sol?Cgel method. We have studied the structural, chemical and optical properties of the samples by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible spectroscopy. The XRD spectra show that all the samples are hexagonal wurtzite structures. We note that doping favors c-axis orientation along (002) planes. Up to 5?at% of Mn doping level, the c-axis lattice parameter shifts towards higher values with the increase of manganese content in the films. The expansion of the lattice constant of ZnO?CMn indicates that Mn is really doped into the ZnO. The SEM investigations of all samples revealed that the crystallites are of nanometer size. The surface quality of the ZnO?CMn film increases with Mn doping but no significant change of the grain size is observed from SEM images. The transmittance spectra show that the transparency of all the samples is greater than 85?%. We note, also, that a small doping (1?%) lowered the refractive index while the thickness of the layers and the gap increase. However, on raising the proportion of Mn beyond 5?%, practically the same values of index and gap as pure ZnO are found.  相似文献   

4.
Well-dispersed undoped and Mg-doped ZnO nanoparticles with different doping concentrations at various annealing temperatures are synthesized using basic chemical solution method without any capping agent. To understand the effect of Mg doping and heat treatment on the structure and optical response of the prepared nanoparticles, the samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray (EDX), UV–Vis optical absorption, photoluminescence (PL), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The UV–Vis absorbance and PL emission show a blue shift with increasing Mg doping concentration with respect to bulk value. UV–Vis spectroscopy is also used to calculate the band-gap energy of nanoparticles. X-ray diffraction results clearly show that the Mg-doped nanoparticles have hexagonal phase similar to ZnO nanoparticles. TEM image as well as XRD study confirm the estimated average size of the samples to be between 6 and 12 nm. Furthermore, it is seen that there was an increase in the grain size of the particles when the annealing temperature is increased.  相似文献   

5.
Copper doped ZnO nanoparticles were synthesized by the chemical technique based on the hydrothermal method. The crystallite structure, morphology and size were determined by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) for different doping percentages of Cu2+ (1-10%). TEM/SEM images showed formation of uniform nanorods, the aspect ratio of which varied with doping percentage of Cu2+. The wurtzite structure of ZnO gradually degrades with the increasing Cu2+ doping concentration and an additional CuO associated diffraction peak was observed above 8% of Cu2+ doping. The change in magnetic behavior of the nanoparticles of ZnO with varying Cu2+ doping concentrations was investigated using a vibrating sample magnetometer (VSM). Initially these nanoparticles showed strong room-temperature ferromagnetic behavior, however at higher doping percentage of copper the ferromagnetic behavior was suppressed and paramagnetic nature was enhanced.  相似文献   

6.
7.
Composite samples (1−x)La0.7Ca0.2Sr0.1MnO3(LCSMO)+x(ZnO) with different ZnO doping levels x have been investigated systematically. The structure and morphology of the composites have been studied by the X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The XRD and SEM results indicate that no reaction occurs between LCSMO and ZnO grains, and that ZnO segregates mostly at the grain boundaries of LCSMO. The magnetic properties reveal that the ferromagnetic order of LCSMO is weakened by addition of ZnO. The results also show that ZnO has a direct effect on the resistance of LCSMO/ZnO composites, especially on the low-temperature resistance. With increase of the ZnO doping level, TP shifts to a lower temperature and the resistance increases. It is interesting to note that an enhanced magnetoresisitance (MR) effect for the composites is found over a wide temperature range from low temperature to room temperature in an applied magnetic field of 3 kOe. The maximum MR appears at x=0.1. The low field magnetoresistance (LFMR) results from spin-polarized tunneling. However, around room temperature, the enhanced MR of the composites is caused by magnetic disorder.  相似文献   

8.
Fe-doped ZnO porous microspheres composed of nanosheets were prepared by a simple hydrothermal method combined with post-annealing, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller N2 adsorption–desorption measurements and photoluminescence (PL) spectra. In this paper we report Fe doping induced modifications in the structural, photoluminescence and gas sensing behavior of ZnO porous microspheres. Our results show that the crystallite size decreases and specific surface area increases with the increase of Fe doping concentration. The PL spectra indicate that the 4 mol% Fe-doped ZnO has higher ratio of donor (VO and Zni) to acceptor (VZn) than undoped ZnO. The 4 mol% Fe-doped ZnO sample shows the highest response value to ppb-level n-butanol at 300 °C, and the detected limit of n-butanol is below 10 ppb. In addition, the 4 mol% Fe -doped ZnO sample exhibits good selectivity to n-butanol. The superior sensing properties of the Fe-doped porous ZnO microspheres are contributed to higher donor defects contents combined with larger specific surface area.  相似文献   

9.
Mn-doped ZnO nanorods were synthesized from aqueous solutions of zinc nitrate hexahydrate, manganese nitrate and methenamine by the chemical solution deposition method (CBD). Their microstructures, morphologies and optical properties were studied in detail. X-ray diffraction (XRD) results illustrated that all the diffraction peaks can be indexed to ZnO with the hexagonal wurtzite structure. Scanning electron microscope (SEM) results showed that the average diameter of Mn-doped ZnO nanorods was larger than that of the undoped one. Photoluminescence (PL) spectra indicated that manganese doping suppressed the emission intensity and caused the blue shift of UV emission position compared with the undoped ZnO nanorods. In the Raman spectrum of Mn-doped ZnO nanorods, an additional mode at about 525 cm−1 appeared which was significantly enhanced and broadened with the increase of Mn doping concentration.  相似文献   

10.
过渡金属与F共掺杂ZnO薄膜结构及磁、光特性   总被引:1,自引:0,他引:1       下载免费PDF全文
周攀钒  袁欢  徐小楠  鹿轶红  徐明 《物理学报》2015,64(24):247503-247503
采用溶胶-凝胶法在玻璃衬底上制备了过渡金属元素与F共掺杂Zn0.98-xTMxF0.02O (TMx=Cu0.02, Ni0.01, Mn0.05, Fe0.02, Co0.05)薄膜, 进而利用X射线衍射仪、扫描电子显微镜、紫外-可见透过谱、光致发光及振动样品磁强计等研究了薄膜的表面形貌、微结构、禁带宽度及光致发光(PL)和室温磁学特性. 研究表明: 掺杂离子都以替位的方式进入了ZnO晶格, 掺杂不会破坏ZnO的纤锌矿结构. 其中Zn0.93Co0.05F0.02O薄膜样品的颗粒尺寸最大, 薄膜的结晶度最好且c轴择优取向明显; Zn0.93Mn0.05F0.02O薄膜样品的颗粒尺寸最小, 薄膜结晶度最差且无明显的c轴择优取; Cu, Ni, Fe与F共掺杂样品的颗粒尺寸大小几乎相同. TM掺杂样品均表现出很高的透过率, 同时掺杂后的薄膜样品的禁带宽度都有不同程度的红移. PL谱观察到Zn0.98-xTMxF0.02O薄膜的发射峰主要由较强的紫外发射峰和较弱的蓝光发射峰组成. Zn0.93Mn0.05F0.02O薄膜样品的紫外发光峰最弱, 蓝光发射最强, 饱和磁化强度最大; 与之相反的是Zn0.96Cu0.02F0.02O薄膜, 其紫外发光峰最强, 蓝光发射最弱, 饱和磁化强度最小. 结合微结构和光学性质对Zn0.98-xTMxF0.02O薄膜的磁学性质进行了讨论.  相似文献   

11.
The Ti-doped ZnO (ZnO:Ti) thin films have been deposited on glass substrates by radio frequency (RF) reactive magnetron sputtering technique with different Ti doping concentrations. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited ZnO:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and fluorescence spectrophotometer. The XRD measurements revealed that all the films had hexagonal wurtzite type structure with a strong (100) preferential orientation and relatively weak (002), (101), and (110) peaks. It was found that the intensity of the (100) diffraction peaks was strongly dependent on the Ti doping concentration. And the full width at half-maximum (FWHM) of (002) diffraction peaks constantly changed at various Ti contents, which decreased first and then increased, reaching a minimum of about 0.378° at 1.43 at.% Ti. The morphologies of ZnO:Ti films with 1.43 at.% Ti showed a denser texture and better smooth surface. All the films were found to be highly transparent in the visible wavelength region with an average transmittance over 90%. Compared with Eg = 3.219 eV for pure ZnO film, all the doping samples exhibited a blue-shift of Eg. It can be attributed to the incorporation of Ti atoms and raising the concentration of carriers. Five emission peaks located at 412, 448, 486, 520, and 550 nm were observed from the photoluminescence spectra measured at room temperature and the origin of these emissions was discussed.  相似文献   

12.
The hydrogen doped ZnO (ZnO:H) thin films were deposited on quartz glass substrates by radio frequency magnetron sputtering. The doping characteristics of ZnO:H thin films with varied hydrogen flow ratio were investigated. At low hydrogen flow ratio (H2/(H2+Ar)≤0.02), the ZnO:H thin films exhibited dominant (002) peaks from X-ray diffraction and the lattice constants became smaller. The particles were mainly a columnar structure. The particles’ size became smaller, and the island-like structure appeared on the thin films surface. In addition, the low resistivity properties of ZnO:H thin films was ascribed to the increase of the carriers concentration and carriers mobility; When the hydrogen flow ratio was more than 0.02 (M≥0.02), two absorption bands at 1400–1800 cm?1 and 3200–3900 cm?1 were observed from the FT-IR spectra, which indicated that the ZnO:H thin films had typical Zn–H bonding, O–H bonding (hydroxyl), and Zn–H–O bonding (like-hydroxyl). The scanning electron microscope (SEM) results show that a large number of hydroxyl agglomeration formed an island-like structure on the thin films surface. The absorption peak at about 575 cm?1 in the Raman spectra indicated that oxygen vacancies (VO) defects were produced in the process of high hydrogen doping. In this condition, the low resistivity properties of ZnO:H thin films were mainly due to the increasing electron concentration resulted from VO. Meanwhile, the Raman absorption peaks at approximately 98 cm?1 and 436 cm?1 became weaker, and the (002) XRD diffraction peak quenched and the lattice constants increased, which shows that the ZnO:H thin films no longer presented a typical ZnO hexagonal wurtzite structure. With the increasing of hydrogen flow ratio, the optical transmittance of ZnO:H thin films in the ultraviolet band show a clear Burstein–Moss shift effect, which further explained that electron concentration was increased due to the increasing VO with high hydrogen doping concentration. Moreover, the optical reflectance of the thin films decreased, indicating the higher roughness of the films surface. It was noteworthy that etching effect of H plasma was obvious in the process of heavy hydrogen doping.  相似文献   

13.
宽禁带直接带隙半导体材料氧化锌(ZnO),具有优异的光电性能、机械性能和化学特性。ZnO材料的结构对其性能影响较大,元素掺杂可改变ZnO晶体结构和带隙宽度,是提升ZnO材料性能的有效手段,当前常用Ag掺杂ZnO即为提高光催化反应效率。高压独立于温度、成分,是调控材料结构组织性能的重要手段,是产生新材料、发现新调控原理的重要因素。该研究通过对比纯ZnO晶体和Ag掺杂ZnO晶体的高压相变行为,揭示了元素掺杂对ZnO纳米晶体材料结构性能的影响。研究首先采用水热法辅助制备纯ZnO纳米微球和Ag掺杂ZnO纳米微球(1∶150Ag/ZnO),表征结果显示水热法合成的纯ZnO和1∶150Ag/ZnO均为六角纤锌矿晶体结构,形貌均为几十纳米尺寸小颗粒堆积形成的微球,ZnO晶格常数随着Ag离子掺杂而变大,Ag掺杂导致ZnO晶格膨胀。随后应用金刚石压腔结合原位拉曼光谱技术测定了纯ZnO和Ag掺杂ZnO的高压结构相变行为。相比于纯ZnO拉曼峰,Ag掺杂ZnO的E2(high)振动模式439 cm-1拉曼峰峰宽变窄,并呈现向低频方向移动的趋势,与无定形ZnO谱峰相近,表明Ag+取代Zn2+影响了Zn-O键,同时也影响了ZnO晶格结构的长程有序性。随体系压力增大,表征六角纤锌矿结构ZnO的拉曼特征峰439 cm-1出现瞬间弱化和宽化。压力增大至9.0 GPa时,纤锌矿结构ZnO拉曼特征峰439 cm-1消失,585 cm-1处出现新峰,ZnO晶体发生由六角纤锌矿向岩盐矿的结构转变。压力继续增大至11.5 GPa,新的拉曼峰显著增强,峰形变窄,同时向高波数方向移动,相变完成,岩盐矿结构ZnO性能稳定。1∶150 Ag/ZnO从六角纤锌矿结构到立方岩盐结构的相变压力为7.2 GPa,低于纯ZnO。相变压力降低表明晶体结构稳定性下降,可能的原因在于掺杂Ag导致ZnO晶格膨胀,晶体结构松弛,两相相对体积变化增加,从而导致相变势垒降低,使样品在较低压力下发生相变。纳米材料的高压研究揭示了元素掺杂对材料结构稳定性的影响,是纳米材料调控原理的潜在研究手段。  相似文献   

14.
Al掺杂ZnO粉体的第一性原理计算及微波介电性质   总被引:1,自引:0,他引:1       下载免费PDF全文
采用基于密度泛函理论的第一性原理平面波超软赝势方法,计算了本征ZnO和Al掺杂ZnO的能带结构和介电常数,又采用固相反应法在600 ℃保温1.5 h分解得到ZnO和Al掺杂ZnO粉体.X射线衍射(XRD)对所得粉体的结构进行表征,X射线光电子谱(XPS)对掺入的Al的形态进行分析,矢量网络分析仪在8.2—12.4 GHz测试样品的微波介电性能.结果表明,Al掺杂后ZnO的晶胞体积基本不变,费米能级进入导带.实验所得粉体均具有ZnO的纤锌矿结构,Al是以替位杂质的形式进入ZnO晶格.实验与计算结果相比,都表 关键词: Al掺杂ZnO 介电性质 能带结构 第一性原理  相似文献   

15.
Cu-doped ZnO nanorods with different Cu concentrations were synthesized through the vapor transport method. The synthesized nanorods were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV–vis spectroscopy. The XRD results revealed that Cu was successfully doped into ZnO lattice. The FE-SEM images showed that the undoped ZnO has needle like morphology whereas Cu-doped ZnO samples have rod like morphology with an average diameter and length of 60–90 nm and 1.5–3 μm respectively. The red shift in band edge absorption peak in UV-vis absorbance spectrum with increasing Cu content also confirm the doping of Cu in ZnO nanorods. The photocatalytic activity of pure and Cu-doped ZnO samples was studied by the photodegradation of resazurin (Rz) dye. Both pure ZnO and the Cu-doped ZnO nanorods effectively removed the Rz in a short time. This photodegradation of Rz followed the pseudo-first-order reaction kinetics. ZnO nanorods with increasing Cu doping exhibit enhanced photocatalytic activity. The pseudo-first-order reaction rate constant for 15 % Cu-doped ZnO is equal to 10.17×10?2min?1 about double of that with pure ZnO. The increased photocatalytic activity of Cu-doped ZnO is attributed to intrinsic oxygen vacancies due to high surface to volume ratio in nanorods and extrinsic defect due to Cu doping.  相似文献   

16.
Ga doped ZnO nanorod arrays were prepared on silicon substrates in a mixture solution of zinc nitrate hexahydrate, methenamine, and gallium nitrate hydrate. Effect of synthesis conditions on crystal structures, morphologies, surface compositions, and optical properties was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence techniques (PL). Experimental results reveal that Ga doping amount can reach 1.67 at% with the increase of gallium nitrate concentration. Ga doping greatly affects the morphologies of ZnO nanorod arrays. The photoluminescence spectra show a sharp UV emission and a broad visible emission. With Ga doping, UV emission has an apparent broadening effect and its peak shifts from 3.27 eV to 3.31 eV. The intensity ratio of UV emission to visible emission demonstrates that appropriate Ga doping amount is beneficial for the improvement of ZnO crystalline quality.  相似文献   

17.
Undoped ZnO and doped ZnO films were deposited on the MgO(111) substrates using oxygen plasma-assisted molecular beam expitaxy. The orientations of the grown ZnO thin film were investigated by in situ reflection high-energy electron diffraction and ex situ x-ray diffraction(XRD). The film roughness was measured by atomic force microscopy, which was correlated with the grain sizes determined by XRD. Synchrotron-based x-ray absorption spectroscopy was performed to study the doping effect on the electronic properties of the ZnO films, compared with density functional theory calculations.It is found that, nitrogen doping would hinder the growth of thin film, and generate the NOdefect, while magnesium doping promotes the quality of nitrogen-doped ZnO films, inhibiting(N_2)Oproduction and increasing nitrogen content.  相似文献   

18.
王长远  杨晓红  马勇  冯媛媛  熊金龙  王维 《物理学报》2014,63(15):157701-157701
采用水热法制备了ZnO和不同掺杂浓度的ZnO:Cd纳米棒,通过SEM,XRD、拉曼光谱等的分析,研究了ZnO和ZnO:Cd的微结构并测试分析了其光致发光特性.结果表明,ZnO和ZnO:Cd纳米棒呈六角纤锌矿结构,Cd掺杂使得纳米棒体积更小.由于内部张应力的影响,Cd掺杂使得材料光学带隙减少.当掺杂浓度为2%时,合成的材料光致发光谱中出现了位于2.67 eV处,由导带底和Zn空位(VZn)缺陷能级跃迁造成的蓝光发射峰,并且Cd的掺入使得位于2.90 eV附近的紫光发射峰强度增强,对于研究ZnO蓝紫发光器件具有重要的意义.  相似文献   

19.
In this work, ZnO nanorods (NRs) were fabricated using a low cost chemical bath deposition (CBD) method. The effect of the potassium hydroxide concentration on the fabricated ZnO nanostructures was studied in depth. The optical, structure, and surface morphology properties of the fabricated ZnO nanostructures were investigated using Uv-vis spectroscopy, XRD, and SEM. The results indicate that the formation of hexagonally structured ZnO nanorods with different lengths and diameters was dependent on the KOH concentration. The sample prepared with 2 M of KOH was the best one for optoelectronic applications, since it has the smallest diameters. This sample was annealed at different temperatures (473 K–1073 K). Positron Annihilation Lifetime Spectroscopy was used to determine the defects in the ZnO nanorods. The results show that the positron mean lifetime (τm) decreased as the annealing temperature increased, which means that the overall defects in the ZnO nanorods decreased with increasing temperature. Consequently, higher performance semiconductor devices based on ZnO nanorods could be fabricated after high annealing of the ZnO nanorods.  相似文献   

20.
In the present study, pure and gold nanoparticle (Au NP)-doped titanium dioxide (TiO2) and cadmium oxide (CdO) thin film were prepared by the sol–gel method, and the effect of Au NP doping on the optical, structural and morphological properties of these thin films was investigated. The prepared thin films were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet–visible–near infrared (UV–Vis–NIR) spectra. While the optical band increases from 3.62 to 3.73 for TiO2 thin films, it decreases from 2.20 to 1.55 for CdO thin films with increasing Au doping concentration. Analysis of XRD indicates that the intensities of peaks of the crystalline phase have increased with the increasing Au NP concentrations in all thin films. SEM images demonstrate that the surface morphologies of the samples were affected by the incorporation of Au NPs. Consequently, the most significant results of the present study are that the Au NPs can be used to modify the optical, structural and morphological properties of TiO2 and CdO thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号