首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Zinc oxide nanoparticles were synthesized using chemical method in alcohol base. During synthesis three capping agents, i.e. triethanolamine (TEA), oleic acid and thioglycerol, were used and the effect of concentrations was analyzed for their effectiveness in limiting the particle growth. Thermal stability of ZnO nanoparticles prepared using TEA, oleic acid and thioglycerol capping agents, was studied using thermogravimetric analyzer (TGA). ZnO nanoparticles capped with TEA showed maximum weight loss. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for structural and morphological characterization of ZnO nanoparticles. Particle size was evaluated using effective mass approximation method from UV-vis spectroscopy and Scherrer's formula from XRD patterns. XRD analysis revealed single crystal ZnO nanoparticles of size 12-20 nm in case of TEA capping. TEA, oleic acid and thioglycerol capped synthesized ZnO nanoparticles were investigated at room temperature photoluminescence for three excitation wavelengths i.e. 304, 322 and 325 nm, showing strong peaks at about 471 nm when excited at 322 and 325 nm whereas strong peak was observed at 411 for 304 nm excitation.  相似文献   

2.
Free standing nanoparticles of ZnO doped with transition metal ion Mn have been prepared by solid state reaction method at 500 °C. X-ray diffraction (XRD) analysis confirmed high quality monophasic wurtzite hexagonal structure with particle size of 50 nm and no signature of dopant as separate phase. Incorporation of Mn has been confirmed with EDS. Bio-inorganic interface was created by capping the nanoparticles with heteromultifunctional organic stabilizer mercaptosuccinic acid (MSA). The surface morphological studies by scanning electron microscopy (SEM) showed formation of spherical particles and the nanoballs grow in size uniformly with MSA capping. MSA capping has been confirmed with thermo gravimetric analysis (TGA) and FTIR. Photoluminescence (PL) studies show that the ZnO:Mn2+ particles are excitable by blue light and emits in orange and red. Occurrence of room temperature ferromagnetism in Mn doped ZnO makes such biocompatible luminescent magnetic nanoparticles very promising material.  相似文献   

3.
Nanosized zinc oxide has been synthesized through a novel single step solution combustion route using citric acid as fuel. The X-ray diffraction (XRD) analysis revealed that the synthesized ZnO nanopowder has the pure wurtzite structure. The phase purity of the nanopowder has been confirmed using differential thermal analysis (DTA), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The morphology and crystalline size of the as-prepared nanopowder characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the powder consisted of a mixture of nanoparticles and nanorods. The nanocrystalline ZnO could be sintered to ∼97% of the theoretical density at 1200 °C in 4 h. The dielectric constant (εr) and dielectric loss (εi) of sintered ZnO pellets at 5 MHz were 1.38 and 9×10−2, respectively, at room temperature.  相似文献   

4.
The luminescence properties of zinc oxide (ZnO) nanocrystals grown from solution are reported. The ZnO nanocrystals were characterized by scanning electron microscopy, X-ray diffraction, cathodo- and photoluminescence (PL) spectroscopy. The ZnO nanocrystals have the same regular cone form with the average sizes of 100-500 nm. Apart from the near-band-edge emission around 381 nm and a weak yellow-orange band around 560-580 nm at 300 K, the PL spectra of the as-prepared ZnO nanocrystals under high-power laser excitation also showed a strong defect-induced violet emission peak in the range of 400 nm. The violet band intensity exhibits superlinear excitation power dependence while the UV emission intensity is saturated at high excitation laser power. With temperature raising the violet peak redshifts and its intensity increases displaying unconventional negative thermal quenching behavior, whereas intensity of the UV and yellow-orange bands decreases. The origin of the observed emission bands is discussed.  相似文献   

5.
Nanocomposites made of ZnO nanoparticles dispersed in thermoplastic polyurethane were synthesized using picosecond laser ablation of zinc in a polymer-doped solution of tetrahydrofuran. The pre-added polymer stabilizes the ZnO nanoparticles in situ during laser ablation by forming a polymer shell around the nanoparticles. This close-contact polymer shell has a layer thickness up to 30 nm. Analysis of ZnO polyurethane nanocomposites using optical spectroscopy, high resolution transmission electron microscopy and X-ray diffraction revealed that oxidized and crystalline ZnO nanoparticles were produced. Those nanocomposites showed a green photoluminescence emission centred at 538 nm after excitation at 350 nm, which should be attributed to oxygen defects generated during the laser formation mechanism of the monocrystalline nanoparticles. Further, the influence of pulse energy and polymer concentration on the production rate, laser fluence and energy-specific mass productivity was investigated.  相似文献   

6.
Superhydrophobic cotton fabrics were prepared by the incorporation of silica nanoparticles and subsequent hydrophobization with hexadecyltrimethoxysilane (HDTMS). The silica nanoparticles were synthesized via sol-gel reaction with methyl trimethoxy silane (MTMS) as the precursor in the presence of the base catalyst and surfactant in aqueous solution. As for the resulting products, characterization by particle size analyzer, scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) were performed respectively. The size of SiO2 nanoparticles can be controlled by adjusting the catalyst and surfactant concentrations. The wettability of cotton textiles was evaluated by the water contact angle (WCA) and water shedding angle (WSA) measurements. The results showed that the treated cotton sample displayed remarkable water repellency with a WCA of 151.9° for a 5 μL water droplet and a WSA of 13° for a 15 μL water droplet.  相似文献   

7.
Un-doped Al (0-9 at.%) nanoparticles and doped ZnO powders were prepared by the sol-gel method. The nanoparticles were heated at 700-800 °C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14 nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al = 5 at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles.  相似文献   

8.
ZnO nanostructures were obtained by directly irradiating a small volume of a solution of precursor on a fused-quartz substrate using an unfocused continuous wave CO2 laser for 2-30 s at laser powers ranging from 20 to 40 W. The laser-based thermochemistry approach allows rapid non-isothermal heating and convection enhanced mass transport which opens new growth mechanisms for the rapid deposition of nanomaterials at predetermined locations on a substrate. The deposits consist of a variety of ZnO nanostructure morphologies, including aggregated nanoparticles, nanorods, faceted nanocrystals and nanowires. The samples were characterized by scanning and transmission electron microscopy, X-ray diffraction and photoluminescence spectroscopy. They were found to exhibit an intense room-temperature photoluminescence, which is characterized by the presence of a strong UV peak around 390 nm and no visible emission. The relationship between the PL signal characteristics and specific ZnO nanostructures was investigated in order to point up optimal nanostructures for possible luminescent devices.  相似文献   

9.
In this work, Co-doped ZnO nanofibers have been fabricated successfully by an electrospinning technique. The as-prepared nanofibers are characterized by themogravimetric analysis (TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman spectra and photoluminescence spectroscopy (PL). Results have showed that a wurtzite ZnO nanofibers were obtained and the PL spectrum showed a red-shift by 10 nm due to narrowing of the ZnO band gap (∼3.29 eV) as a result of Co doping. Meanwhile, Raman scattering spectra exhibited an unusual peak at 540 cm−1.  相似文献   

10.
Zinc sulphide (ZnS) nanoparticles were prepared by homogeneous hydrolysis of zinc sulphate and thioacetamide (TAA) at 80 °C. After annealing at temperature above 400 °C in oxygen atmosphere, zinc oxide (ZnO) nanoparticles were obtained. The ZnS and ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission microscopy (HRTEM), selected area electron diffraction (SAED), by BET and BJH methods used for surface area and porosity determination. The photocatalytic activity of the as-prepared ZnO samples was determined by the decomposition of Orange II in the aqueous solution under UV irradiation of 365 nm of wavelength.  相似文献   

11.
Surface-functionalized zinc oxide (ZnO) nanoparticles were synthesized with ethylene diamine tetraacetic acid (EDTA) as a modification agent, which were used as adsorbents in the adsorption of Cu2+ at certain conditions. The transmission electron microscopy (TEM) results show that the average size of ZnO particles is about 45 nm, and it exhibits hexagonal wurtzite structure. Fourier transform infrared (FTIR) spectra reveal that the EDTA species are chemically bonded on the surface of ZnO. Compared with bare ZnO particles, the functionalized ZnO nanoparticles have a better activity in the Cu2+ adsorption. The maximum adsorption capacity of functionalized ZnO nanoparticles is 20.97 mg/g, while it is 17.93 mg/g for the bare ZnO. The adsorption isotherm of bare ZnO particles is in accordance with the Freundlich model, and the chemical adsorption is in a dominant position in the adsorption process of Cu2+ on functionalized ZnO particles.  相似文献   

12.
In this work patterned ZnO films were prepared at room-temperature by deposition of ∼5 nm size ZnO nanoparticles using confined dewetting lithography, a process which induces their assembly, by drying a drop of ZnO colloidal dispersion between a floating template and the substrate. Crystalline ZnO nanoparticles exhibit a strong visible (525 nm) light emission upon UV excitation (λ = 350 nm). The resulting films were characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). The method described herein presents a simple and low cost method to prepare crystalline ZnO films with geometric patterns without additional annealing. Such transparent conducting films are attractive for applications like light emitting diodes (LEDs). As the process is carried out at room temperature, the patterned crystalline ZnO films can even be deposited on flexible substrates.  相似文献   

13.
Synthesis and characterization of CdS/PVA nanocomposite films   总被引:1,自引:0,他引:1  
A series CdS/PVA nanocomposite films with different amount of Cd salt have been prepared by means of the in situ synthesis method via the reaction of Cd2+-dispersed poly vinyl-alcohol (PVA) with H2S. The as-prepared films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) spectra, Fourier transform infrared spectroscope (FTIR) and thermogravimetric analysis (TGA). The XRD results indicated the formation of CdS nanoparticles with hexagonal phase in the PVA matrix. The primary FTIR spectra of CdS/PVA nanocomposite in different processing stages have been discussed. The vibrational absorption peak of CdS bond at 405 cm−1 was observed, which further testified the generation of CdS nanoparticles. The TGA results showed incorporation of CdS nanoparticles significantly altered the thermal properties of PVA matrix. The photoluminescence and UV-vis spectroscopy revealed that the CdS/PVA films showed quantum confinement effect.  相似文献   

14.
Highly concentrated ZnO sol was synthesized by an improved sol-gel method. Water was used as a modifier to control the sol-gel reaction and provide a way to increase the sol concentration. Concentration of ZnO in the prepared sol is higher than from other methods. Optical absorption and photoluminescence were used to investigate optical properties of the prepared sol. FTIR test was performed to study the influence of water on the compounds of as-prepared sol. The size and morphology of ZnO nanoparticles have been studied by HRTEM. The prepared colloidal ZnO nanocrystals have narrow size distribution (5-8 nm) and showed strong blue emission. The prepared sol has enough potential for optoelectronic applications.  相似文献   

15.
ZnO nanowires were fabricated on Au coated (0 0 0 1) sapphire substrates by using a pulsed Nd:YAG laser with a ZnO target in furnace. ZnO nanowires have various sizes and shapes with a different substrate position inside a furnace. The length and the diameter of these ZnO nanowires were around 3-4 μm and 120-200 nm, respectively, confirmed by scanning electron microscopy (SEM). The diameter control of the nanowires was achieved by varying the position of substrates. The ultraviolet emission of nanowires from the near band-edge emission (NBE) was observed at room temperature. The formation mechanism and the effect of different position of substrates on the structural and optical properties of ZnO nanowires are discussed.  相似文献   

16.
Nanostructured deposits of TiO2 were grown on Si (1 0 0) substrates by laser ablating a TiO2 sintered target in vacuum or in oxygen using a Ti:sapphire laser delivering 80 fs pulses. The effect of the laser irradiation wavelength on the obtained nanostructures, was investigated using 800, 400 and 266 nm at different substrate temperatures and pressures of oxygen. The composition of the deposits was characterized using X-ray photoelectron spectroscopy (XPS) and the surface morphology was studied by environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM). Deposits are absent of microscopic droplets in all conditions explored. The best deposits, constituted by nanoparticles of an average diameter of 30 nm with a narrow size distribution, were obtained at the shorter laser wavelength of 266 nm under vacuum at substrate room temperature.  相似文献   

17.
Vertically aligned ZnO nanorod arrays with different aspect ratios were synthesized by hybrid wet chemical route. Modulation of the field emission properties (FE) with aspect ratio of ZnO nanorods was examined. With the increase in the aspect ratio, the emission current density increases from 0.02 to 8 μA/cm2 at 7.0 V/μm. Turn-on voltage was seen to decrease from 9.6 to 7 V/μm at a current density of 10 μA/cm2 with the increase in aspect ratio in the ZnO films. The interrelation between the FE characteristics (emission thresholds, current density, surface uniformity, etc.) and microstructure of the ZnO nanostructure obtained from scanning electron microscopy (SEM) and atomic force microscopy (AFM) was discussed. Quality of the ZnO nanorods was also examined by using Raman spectroscopy and Fourier transformed infrared spectroscopy (FTIR). It was found that the observed enhancements of FE characteristics could mainly be attributed to the increase in aspect ratio and associated number density of ZnO nanorods.  相似文献   

18.
Two types of novel Mg-doped pencil-shaped ZnO microprisms had been successfully synthesized on Mg(NO3)2-coated Si (1 1 1) substrates by thermal chemical vapor deposition method. The as-prepared ZnO prisms were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission transmission electron microscope (FETEM), selected area electron diffraction (SAED), and photoluminescence (PL) spectroscopy. The straight microprisms are made up of hexagonal pyramids tips and hexagonal prisms bodies. Both of the structures are perfect single crystal and have grown along the [0 0 0 1] direction preferentially. Photoluminescence reveals a red-shift at around 387 nm which is induced by Mg doping and a green light emission peak at around 511 nm. The pencil-shaped ZnO microstructure can provide an improvement in novel ultraviolet light-emitting devices. In addition, the growth mechanism of the special ZnO microprisms is discussed briefly.  相似文献   

19.
In this investigation, ZnO nanoparticles were prepared by a simple and rapid method. This method is based on the short time solid state milling and calcinations of zinc acetate and citric acid powders. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, photoluminescence and UV-vis spectroscopy. It was shown that the calcination temperature significantly affected the particle size and optical properties of the synthesized ZnO nanoparticles. Calculation based on the XRD data shows that the average sizes of ZnO particles are in agreement with those from TEM images and the size of the particles increases on increasing the calcination temperature. Also the band gap of samples decreased from 3.29 to 3.23 eV on increasing the calcination temperature from 350 to 600 °C. Photoluminescence analyses show that many defects such as interstitial zinc, zinc vacancy and oxygen vacancy are responsible for the observed optical properties.  相似文献   

20.
Colloidal ZnO nanoparticles were prepared in ethanol solutions and annealed at different temperatures (150-500 °C) subsequently. The size, morphology and surface characteristics of ZnO nanoparticles were examined by TEM, XRD, UV-vis absorption spectrum and FTIR technique. With the increase of annealing temperature, the mean size of ZnO nanoparticles was increased from 10 to 90 nm, while the bonding structure of acetate groups coordinating with zinc ions evolved from unidentate to bidentate type. The UV-induced degradation results of methyl orange verified that the photocatalytic process of colloidal ZnO nanoparticles without annealing and the sample annealed at 150 °C was unstable for the weakly bonding unidentate type of acetate groups. However, the sample annealed above 150 °C demonstrated their photocatalytic stability in the whole catalytic process for the stable bidentate bonding type of acetate groups. In addition, the change of particle size in the annealing process significantly affected the catalytic activity of photocatalysts. ZnO nanoparticles annealed at 300 °C would be a prospective photocatalysts with a high catalytic activity and stability compared with the other samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号