首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A group of zeolites and a 3D nanoporous metal-organic material RPM-1 were tested as column packings for adsorption of isotactic polypropylene and linear polyethylene from dilute solutions. It was found that polyethylene is fully or partially retained from thermodynamically good solvents (1,1,2,2-tetrachloroethylene, 1,4-dimethylbenzene, diphenylether, 1,2-dichlorobenzene and 1,3-dichlorobenzene) at temperatures of 115 °C or 140 °C, when a specific type of zeolite with pore sizes 5–6 Å has been used as the column packing. Polypropylene was fully retained in another type of zeolite with pores of 7–12 Å, when diphenylether was used as the mobile phase. As far as known, this is the first system sorbent - mobile phase, where adsorption of polypropylene was observed.  相似文献   

2.
Linear polyethylene and isotactic polypropylene standards were injected into columns which contained MFI (SH-300 and silicalite) or faujasite (CBV-780) type zeolites. 1,2,4-Trichlorobenzene, cyclohexanone, 2-ethyl-hexanol, decalin and tetralin were used as mobile phases at 140 degrees C. It was found that polyethylene is fully retained on zeolite SH-300 when decalin is used as a mobile phase. Moreover, polyethylene is partially retained on zeolite SH-300 from tetralin and from 1,2,4-tichlorobenzene, on silicalite from decalin and in a very small extent on zeolite CBV-780 from decalin. Using all other solvents, polyethylene and polypropylene were not retained in any of the columns tested. This is the first experimental observation of polyethylene adsorption from a solvent on a chromatographic stationary phase.  相似文献   

3.
The elution behavior of linear polyethylene and isotactic, atactic and syndiotactic polypropylene was tested using three different carbon column packings: porous graphite (Hypercarb), porous zirconium oxide covered with carbon (ZirChrom-CARB), and activated carbon TA 95. Several polar solvents with boiling points above 150°C were selected as mobile phases: 2-ethyl-1-hexanol, n-decanol, cyclohexylacetate, hexylacetate, cyclohexanone, ethylene glycol monobutyl ether and one non-polar solvent, n-decane. Polyethylene standards were completely or partially adsorbed in all tested sorbent/solvent systems. Polypropylene standards were partially adsorbed on Hypercarb and carbon TA95, but did not adsorb on ZirChrom-CARB. ZirChrom-CARB retained polyethylene pronouncedly when 2-ethyl-1-hexanol, cyclohexylacetate or hexylacetate were used as mobile phases at temperature 150 or 160°C, while all three basic stereoisomers of polypropylene eluted in size exclusion mode in these sorbent/solvent pairs. This is very different from the system Hypercarb/1-decanol, which separated polypropylene according to its tacticity. The opposite elution behavior of polyethylene and polypropylene in system ZirChrom-CARB/2-ethyl-1-hexanol (polypropylene eluted, polyethylene fully adsorbed) enabled to realize separation of blends of polyethylene and polypropylene. Ethylene/1-hexene copolymers were separated according to their chemical composition using system Hypercarb/2-ethyl-1-hexanol/1,2,4-trichlorobenzene.  相似文献   

4.
The high performance liquid chromatography of polymers under limiting conditions of adsorption (LC LCA) separates macromolecules, either according to their chemical structure or physical architecture, while molar mass effect is suppressed. A polymer sample is injected into an adsorption-active column flushed with an adsorption promoting eluent. The sample solvent is a strong solvent which prevents sample adsorption. As a result, macromolecules of sample elute within the zone of their original solvent to be discriminated from other, non-adsorbing polymer species, which elute in the exclusion mode. LC LCA sample recovery has been studied in detail for poly (methyl methacrylate)s using a bare silica gel column and an eluent comprised toluene (adsorli) and tetrahydrofuran (desorli). Sample solvent was tetrahydrofuran. It was found that a large part of injected sample may be fully retained within the LC LCA columns. The amount of retained polymer increases with decreasing packing pore size and with higher sample molar masses and, likely, also with the column diameter. The extent of full retention of sample does not depend of sample volume. An additional portion of the injected desorli sample solvent (a tandem injection) does not fully eliminate full retention of the sample fraction and the reduced recovery associated with it. The injected sample is retained along the entire LC LCA column. The reduced sample recovery restricts applicability of many LC LCA systems to oligomers and to discrimination of the non-adsorbing minor macromolecular components of complex polymer mixtures from the adsorbing major component(s). The full retention of sample molecules within columns may also complicate the application of other liquid chromatographic methods, which combine entropic and enthalpic retention mechanisms for separation of macromolecules.  相似文献   

5.
Macromolecules, which stay adsorbed within the active size-exclusion chromatography (SEC) column packings may strongly reduce effective volume of the separation pores. This brings about a decrease of retention volumes of the non-retained polymer samples and results in the increased apparent molar mass values. The phenomenon has been demonstrated with a series of poly(methyl methacrylate)s (PMMA) and a polyethylenoxide (PEO) fully retained by adsorption within macroporous silica gel SEC column from toluene or tetrahydrofuran, respectively. The non-retained probes were polystyrenes (PS) in toluene and both PS and PMMA in THF eluents. The errors in the peak molar mass values determined for the non-retained polymer species using a column saturated with adsorbed macromolecules and considering calibration curves monitored for the original "bare" column packing assumed up to several hundreds of percent. Errors may appear also in the weight and number averages of molar masses calculated from calibration dependences obtained with columns saturated with adsorbed macromolecules. Moreover, the SEC peaks of species eluted from the polymer saturated columns were broadened and in some cases even split. These results demonstrate a necessity not only to periodically re-calibrate the SEC columns but also to remove macromolecules adsorbed within packing in the course of analyses.  相似文献   

6.
Raman spectroscopy is used to investigate the conformation and packing of isotactic crystalline α-phase polypropylene compared with lower-order β-phase isotactic polypropylene and to study the solution behavior of atactic polypropylene. The high-frequency region of the spectrum is analyzed in light of a normal-mode calculation that takes into account the methyl-group vibrations. This region is sensitive to both chain conformation and packing, and because of the high intensity of the methyl and methylene high-frequency stretching modes, it can be used to probe small changes in intermolecular or intramolecular order. Differences in the thermal behavior between the two solid isotactic polypropylene samples are explained interms of packing defects which exist in the β-phase form. In the solution study, we demonstrate that, for molecules in which bands sensitive to intermolecular interactions exist, as is the case of the methyl and methylene vibrations of polypropylene, spectroscopic techniques can be used to estimate the minimum overlap concentration.  相似文献   

7.
Minor (<1%) macromolecular constituents may significantly affect physical/utility properties of the multicomponent polymer systems. Separation and molecular characterization of the small amounts of macromolecular additives from the dominant polymer matrices represents an exacting analytical problem. Recently a series of unconventional liquid chromatographic methods was developed for separation of the constituents of polymer blends; their generic name is Liquid chromatography under limiting conditions of enthalpic interactions, LC LC. The LC LC procedures employ the difference in elution rate of the low molecular substances and the macromolecules within the column packed with porous particles. Small molecules permeate practically all pores of the packing and therefore they elute slowly. Polymer species are partially of fully pore excluded and in absence of enthalpic interactions they are rapidly transported along the column. The appropriately chosen low molecular substances promote interactions of macromolecules within the column. If eluted in front of sample, the interaction promoting low molecular substance may create a sort of slowly eluting barrier that is “impermeable” for the interacting macromolecules and efficiently decelerates their fast transport. The blocking action of a barrier differs for macromolecules of distinct nature, which elute from the column with a different rate to be mutually separated irrespectively of their molar mass. In present work, different approaches to the LC LC separations are compared from the point of view of their applicability to complex polymer systems, in which one constituent is present at very low concentration, and also in light of sample recovery. The practical examples are the two- and three-component polymer blends of polystyrenes, poly(methyl methacrylate)s and poly(vinyl acetate)s of different molar mass averages and distributions, as well as the diblock copolymers polystyrene-block-poly(methyl methacrylate) that contain their parent homopolymers.  相似文献   

8.
The adsorption of polyethylene and polypropylene on zeolites depends on the nature of zeolite, the solvent as well as the molar mass of the polymer sample. For example, linear polyethylene is strongly retained on zeolite SH-300 from decalin, while isotactic, syndiotactic or atactic polypropylene is fully eluted in this system. On the other hand, polypropylene is retained on zeolite CBV-780 from diphenylether, while linear polyethylene is eluted. These differences in the elution behaviour have been utilised for selective removal of either linear polyethylene or polypropylene from blends of both polymers. The desorption of the retained polymer is difficult, or at times impossible. However, the selected adsorption systems have complimentary character, i.e. either one or second component is eluted or fully retained. Thus these sorbent/solvent systems, identified herein, are the first isocratic chromatographic systems, which enable selectively to remove polyethylene or polypropylene from their mixture. Moreover, decalin/SH-300 enables the removal of both linear and branched polyethylene from mixtures with random ethylene/propylene copolymers (polyethylene fully retained, ethylene/propylene copolymers eluted).  相似文献   

9.
Linear polyethylene and isotactic polypropylene samples were dissolved in 1,1,2,2-tetrachloroethane or 1,2,3-trichloropropane and injected at 135 °C into columns packed with porous particles of hydroxyapatite, aluminium oxide, zirconium oxide, Florisil, or silica gel. Both polymers were retained, to different extents, within the columns. It is hypothesized that the polymers interact with the surfaces of the adsorbents and are adsorbed. Retention of isotactic polypropylene from 1,1,2,2-tetrachloroethane was in the order aluminium oxide > hydroxyapatite ≈ zirconium oxide ≈ Florisil ≈ silica gel. Recovery of polyethylene from 1,1,2,2-tetrachloroethane was almost the same on aluminium oxide, hydroxyapatite, zirconium oxide, and Florisil; it was more retained by silica gel. Polyethylene was usually more retained than polypropylene. Recovery of polyethylene from both chlorinated solvents was similar whereas recovery of polypropylene was better from 1,2,3-trichloropropane than from 1,1,2,2-tetrachloroethane. Both chlorinated solvents are toxic and may attack seals in a Waters 150C chromatograph. Moreover, the polymers may be chlorinated in these solvents. For these reasons they are not optimum solvents for routine analysis. This is the first time polyethylene and polypropylene have been found to be retained by adsorbents with pore diameters in the range 60–300 Å. Desorption of the retained polymers is possible with some polar solvents.  相似文献   

10.
Adsorption of linear polyethylene and isotactic polypropylene on columns packed with zeolites ZSM‐5, Y, and silicalite was studied using high‐temperature liquid phase chromatography. Linear polyethylene was fully retained on a column packed with ZSM‐5 zeolite from non‐polar solvents, such as 1,1,2,2‐tetrachloroethane and 1,3,5‐trimethylbenzene at a temperature of 140°C. Partial adsorption on ZSM‐5 zeolite was found for polyethylene in 1,2,4‐trichlorobenzene and on silicalite from 1,2,4‐trichlorobenzene and 1,3,5‐trimethylbenzene. On the other hand, adsorption of polyethylene was not found from polar liquids, such as 2‐ethylhexyl acetate, cyclohexyl acetate, and cyclohexanone. Isotactic polypropylene was not adsorbed on any tested sorbent.  相似文献   

11.
Summary: Samples of polypropylene having different stereoregularities, i.e., differing in the isotactic or syndiotactic stereosequence distribution, were separated by means of high-temperature gradient adsorption liquid chromatography. The porous graphite was used as stationary phase in the column packing (Hypercarb®). Predominantly isotactic samples eluted in 1-decanol, while predominantly syndiotactic samples eluted in a binary gradient composed of 1-decanol and 1,2,4-trichlorobenzene. Their elution volumes increased with the average content of the syndiotactic units (racemo dyads mole fraction as determined with the NMR spectroscopy) in the samples. Thus these chromatographic separations represent a new method for the analysis and characterization of stereoregular polyolefins. It requires substantially less time and solvents than the commonly used methods.  相似文献   

12.
Linear polyethylene standards in the range of 1-500 kg/mol, dissolved in 1,2,4-trichlorobenzene, were injected into a column packed with oligo(dimethylsiloxane) modified silica gel. Fifteen polar solvents (cyclohexanone, cyclohexylacetate, cyclohexanol, nonylalcohol, dimethylformamide, dimethyl sulfoxide, ethylene- and diethylene glycol monobutyl ether, benzylalcohol, hexylacetate, bis(2-ethyl-hexyl)phthalate, N,N-dimethylacetamide, propylene carbonate, dipropylene glycol and N-methyl-pyrrolidone) were evaluated as mobile phases. Depending on the type of mobile phase evaluated, different elution behaviors are observed for polyethylene: (1) polyethylene was eluted in the size exclusion mode, (2) polyethylene was eluted together with the sample solvent peak at constant elution volume, (3) polyethylene was partially or fully retained on the column. The retained polymer was easily removed from the column by injecting a small volume of trichlorobenzene. The use of ethylene glycol monobutyl ether as the mobile phase enabled separation of the polyethylene from polypropylene. In this case polypropylene is eluted in the size exclusion mode, while polyethylene is eluted at a constant elution volume or remains in the column.  相似文献   

13.
A highly cross-linked porous polymer resin based on styrene-divinylbenzene matrix with pores created by the use of micellar imprinting technique was used as chromatographic packing material. Its performance as a column packing material in inverse size-exclusion chromatography was compared with a non-imprinted resin of the same polymer matrix. The porous structures (the pore size and the porosity) of the resins in the dry and wet states and their relationships with the elution volume of probe solutes (alkanes and polystyrene standards) were established. Characteristic properties of the resins such as specific pore volume, specific surface area and porosity are compared with results obtained by other methods of characterization such as mercury intrusion porosimetry, solvent regain and nitrogen sorption. The results show that the new porous resin can be used in the separation of small molecules. The separation is based on the size of the molecules, and the larger pores (meso- and macropores) in the porous resin can provide a much easier access to the smaller pores (micropores) which are useful in the chromatographic separations.  相似文献   

14.
Liquid chromatography of macromolecules at the critical adsorption point (LC CAP) presents a potentially very powerful method for molecular characterization of complex polymers. However, LC CAP applicability is limited due to various experimental problems. The pore sizes and surface chemistry of the column packings belong to the most important weak points of the method. The LC CAP behavior of poly(methyl methacrylate)s was investigated using bare silica gels of 6, 12, and 100 nm pore sizes and with various amounts of surface silanols. Tetrahydrofuran as the adsorption suppressing liquid and toluene as the adsorption promoting liquid were mixed to form the “nearly critical” eluents. Both pore size and surface chemistry of silica were found to strongly influence the retentive characteristics of the system in the critical adsorption area. Macromolecules that were large enough to be excluded from the packing pores hardly followed the LC CAP rules: their retention volumes changed irregularly with the polymer molar mass and their recovery dropped sharply. The narrow pore silica gel-packed column governed the elution patterns of the whole column set composed of silica gels with different pore sizes. This makes the conventional LC CAP characterization of common polymers with broader molar mass distribution impractical and even not feasible. A hybrid column system was proposed containing narrow pore nonadsorptive column added in series to the meso- and macroporous LC CAP silica gels. This narrow pore column would allow separation of gas, impurities, and system peaks from the polymer peaks. The possible successive changes of the surface of silica gel, e.g., due to formation of silanols by hydrolysis or due to irreversible adsorption of some admixtures from the sample or eluent may make the LC CAP irrepeatable. Pronounced peak broadening was observed in the critical adsorption area and this effect increased strongly with the polymer molar mass. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1363–1371, 1998  相似文献   

15.
The chromatography of mechanically sensitive macromolecules still represents a challenge. While larger pores can reduce the mechanically induced cleavage of large macromolecules and column clogging, the column performance inevitably decreases. To investigate the effect of pore size on the mechanical degradation of DNA, column permeability and enzyme biological activity, methacrylate monoliths with different pore sizes were tested. Monolith with a 143 nm pore radius mechanically damaged the DNA and was clogged at flow rates above 0.5 ml min(-1) (26 cm h(-1)). For monoliths with a pore radius of 634 nm and 2900 nm, no mechanical degradation of DNA was observed up to 5 ml min(-1) (265 cm h(-1)) above which the HPLC itself became the main source of damage. A decrease of a permeability appeared at flow rate 1.8 ml min(-1) (95 cm h(-1)) and 2.3 ml min(-1) (122 cm h(-1)), respectively. The effect of the pore size on enzyme biological activity was tested with immobilized DNase and trypsin on all three monoliths. Although the highest amount of enzyme was immobilized on the monolith with the smallest pores, monolith with the pore radius 634 nm exhibited the highest DNase biological activity probably due to restricted access for DNA molecules into the small pores. Interestingly, specific biological activity was increasing with a pore size decrease. This was attributed to higher number of contacts between a substrate and immobilized ligand.  相似文献   

16.
Propene-hexene copolymers crystallize in a new polymorphic form of isotactic polypropylene when the concentration of hexene is higher than nearly 10-15 mol %. The hexene units are included in the crystals, inducing an increase of density that allows crystallization of 3-fold helical chains in a trigonal unit cell according to the space group R3c or Rc, where the helical symmetry of the chains is maintained in the crystal lattice. The structure of this new form is similar to those of isotactic polybutene and polystyrene and does not crystallize in polypropylene homopolymer because it would have too low density. The crystal structure of isotactic polypropylene is therefore no longer an exception to the principles of polymer crystallography, but the new structure represents the fulfillment of these principles and indicates that the packing of polymer molecules is mainly driven by density.  相似文献   

17.
LC of polymers under limiting conditions of adsorption (LC LCA) is a novel method based on different mobility of (pore excluded) macromolecules compared to (pore permeating) solvent molecules. Polymer sample is injected in a solvent preventing its adsorption within the column. Eluent promotes sample adsorption. Under these conditions, macromolecules cannot leave its initial solvent and elute from the column independently of their molar mass. In contrast, a less interactive simultaneously injected polymer leaves its initial solvent zone and is eluted in the size exclusion mode. As a result, chemically different polymer species can be discriminated. The effect of selected experimental conditions was studied on the LC LCA behavior of poly(methyl methacrylate)s eluted from bare silica gel columns. The parameters were packing pore diameter, injected sample volume and concentration, as well as column temperature. The size independent elution was only little affected by the above parameters and LC LCA produced well-focused peaks. The LC LCA mechanism was operative even at a very large sample of both volume and concentration. This makes LC LCA a robust and user-friendly method, likely suitable also for characterization of minor components of polymer mixtures.  相似文献   

18.
高压液相色谱内表面反相填料的发展及其应用   总被引:1,自引:0,他引:1  
内表面反相填料(InternalsurfacereversedphaseISRP)是1985年首次研制出来的一种高压液相色谱填料,其微孔内表面接疏水基团,外表面接亲水基团,当含蛋白质或其它大分子的样品进入柱子后,蛋白等大分子不被系统保留,而小分子物质则可以进入微孔得到分离。这一填料的研制和发展使血清样品直接进样成为可能,在药物分析方面有独特的优点。本文综述了ISRP的特点、合成方法、工作原理及其应用。  相似文献   

19.
The deformation of isotropic isotactic polypropylene with a spherulitic initial structure has been studied. Fourier transform IR spectra of polypropylene deformed to various stretch ratios in air and in a physically active medium have been recorded. From the spectroscopy data, the dichroic ratios and orientation functions have been calculated for the amorphous and crystalline polypropylene phases. It turned out that the orientations of macromolecules in the amorphous and crystalline polypropylene phases change identically while stretching in a physically active (water–ethanol) medium. However, the deformation in air leads to a more pronounced orientation of macromolecules in the crystalline phase as compared with the orientation in the amorphous phase. The maximum values of the orientation function in the deformation in air coincide with the stretch ratio at the yield point. This is how a physically active medium acts in crazing in comparison with shear deformation in air.  相似文献   

20.
The effects of pore size and alkyl chain length of silica- and polymer-based packing materials in the elution of polypeptides with an acetonitrile gradient in the presence of trifluoroacetic acid were studied. Considerable differences were found in the performance of alkylsilylated phases prepared from various wide-pore silica particles assumed to have 30-50-nm pores. The pore size of such silica gels was found to be the critical factor in determining the efficiency for high-molecular-weight polypeptides. Silica C18 phases having small pore volumes below 20 nm pore diameter showed comparable performances to C4 and C8 phases for polypeptides with molecular weights of up to 80,000, and were more stable. Polymer-based packing materials with adequate pore size provided excellent column efficiencies and recoveries for polypeptides with higher chemical stabilities than silica-based materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号