首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We fabricated a layer-by-layer (LbL) film composed of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and poly(allylamine) (PAA) and investigated its pH response by UV-visible spectrometry. When the (PAA/TPPS)5PAA film was immersed in a pH 1.5 solution, J-aggregate bands were observed at 484 and 691 nm. Above pH 3.0, the J-aggregates were completely dissociated and an H-aggregate band was observed at 405 nm. The interconversion between the J-aggregates and H-aggregates in the LbL film was repeatable and controllable by changing the pH of the solutions.  相似文献   

2.
The cationic nature of heptamethine cyanines gives them the capacity to form aggregates with salts by electrostatic interactions. In this work, NaCl promoted J-aggregate formation of aza-coating heptamethine cyanines is explored. NaCl can induce the N-benzyloxycarbonyl Cy-CO2Bz to assemble into a J-aggregate having an absorption at 890 nm. Its excellent fluorescence response to NaCl implies that it has great potential for use as a probe for tracing salt stress in plants. Moreover, NaCl also promotes formation of J-aggregates from the N-ethyloxycarbonyl Cy-CO2Et . The aggregate shows an intense absorption at 910 nm compared to the monomer which absorbs at 766 nm. Its J-aggregated form can serve as a photothermal agent. And the photothermal conversion efficiency is increased from 29.37 % to 57.59 %. This effort leads to the development of two applications of new cyanine J-aggregates including one for tracing salt stress of plants and the other for promoting photothermal therapy of tumors.  相似文献   

3.
J-aggregates of a diacid form (H4TPPS2-) of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4-) were stabilized by binding with ferric myoglobin (metMb) in aqueous solution at neutral pH. The J-aggregates gradually dissociated to monomeric H2TPPS(4-). The average half-lifetime (t1/2) of the J-aggregates in the presence of sufficient amounts of metMb was ca. 3 h in phosphate buffer at pH 7.0 and 25 degrees C. The stabilization of the J-aggregate by metMb is ascribed to encapsulation and fixation of an edge-to-edge structure of the J-aggregate by the relatively rigid protein molecules. The secondary structure of metMb was altered in some extent in the presence of an excess amount of the J-aggregates while no effect on denaturation of metMb was observed with the H2TPPS(4-) monomer or polyacrylate. The hydrophobic nature of the J-aggregate seems to play an important role for denaturation of metMb. The ability of denatured metMb to bind the azide anion was higher than that of natural metMb. The denaturation of metMb by the J-aggregates seems to induce surfacing of hemin leading to an entropy gain in coordination of the N3(-) anion to the iron(III) center.  相似文献   

4.
The aim of this work was to investigate the formation of J-aggregates of thiacyanine dye (TC, 5,5′-disulfopropyl-3,3′-dichlorothiacyanine sodium salt) in the presence of 6 nm spherical silver nanoparticles (Ag NPs) using spectrophotometric and fluorescence methods. The formation of J-aggregates was concentration dependent and characterized by the appearance of the new absorption band with the maximum at 481 nm. Spectrophotometric study of J-aggregate formation and time stability suggested that they were formed on the account of monomer form of TC. Moreover, the stability of J-aggregates increased with the lowering AgNPs concentration. The measurements of fluorescence of the NPs—dye assembly clearly indicated that the fluorescence of TC was quenched by Ag NPs on the concentration dependent manner. The spectrophotometric and fluorescence properties of NPs—dye assembly were found to be quantitatively related to the surface coverage of the dye on the Ag NPs.  相似文献   

5.
Foam thin liquid films (TLF) and monolayers at the air–water interface formed by DMPC mixed with DMPE-bonded poly (ethylene glycol)s (DMPE-PEG550, DMPE-PEG2000 and DMPE-PEG5000) were obtained. The influence of both (i) PEG chain size (evaluated in terms of Mw) and mushroom-to-brush conformational transition and (ii) of the liposome/micelle ratio in the film-forming dispersions, on the interfacial properties of mixed DMPC/DMPE-PEG films was compared.

Foam film studies demonstrated that DMPE-PEG addition to foam TLFs caused (i) delayed kinetics of film thinning and black spot expansion and (ii) film stabilization. At the mushroom-to-brush transition, due to steric repulsion increased DMPE-PEG films thickness reached 25 nm while pure DMPC films were only 8 nm thick Newton black films. It was possible to differentiate DMPE-PEG2000/5000 from DMPE-PEG550 by the ability to change foam TLF formation mechanism, which could be of great importance for “stealth” liposome design.

Monolayer studies showed improved formation kinetics and equilibrium surface tension decrease for DMPE-PEG monolayers compared with DMPC pure films.

SEM observations revealed “smoothing” and “sealing” of the defects in the solid-supported layer surface by DMPE-PEGs adsorption, which could explain DMPE-PEGs ability to stabilize TLFs and to decrease monolayer surface tension.

All effects in monolayers, foam TLFs and solid-supported layers increased with the increase of PEG Mw and DMPE-PEG concentration. However, at the critical DMPE-PEG concentration (where mushroom-to-brush conformational transition occurred) maximal magnitude of the effects was reached, which only slightly changed at further DMPE-PEG content and micelle/liposome ratio increase.  相似文献   


6.
Linear spectral properties, including excitation anisotropy, of pseudoisocyanine or 1,1′-diethyl-2,2′-cyanine iodide (PIC) J-aggregates in aqueous solutions with J-band position at 573 nm were investigated. Two-photon absorption of PIC J-aggregates and monomer molecules was studied using an open aperture Z-scan technique. A strong enhancement of the two-photon absorption cross-section of PIC in the supramolecular J-aggregate assembly was observed in aqueous solution. This enhancement is attributed to a strong coupling of the molecular transition dipoles. No two-photon absorption at the peak of the J-band was detected.  相似文献   

7.
The monolayer assemblies incorporating the J-aggregates of oxacyanine dye, N,N'-dioctadecyloxacyanine perchlorate (S9), and thiacyanine dye, N,N'-dioctadecylthiacyanine perchlorate (S11), S9(J) + S11(J), have been fabricated by the Langmuir-Blodgett (LB) technique. The mole fraction X of S11, X = [S11]/([S9] + [S11]), was varied from 0 to 1. Steady-state absorption spectra, fluorescence spectra, and picosecond fluorescence decay curves of the monolayer assemblies have been measured. Spectroscopic properties of the monolayer assemblies incorporating the individual dye aggregates, S9 J-aggregate (S9(J), X = 0) or S11 J-aggregate (S11(J), X = 1), are characterized by a distinct J-band and resonance fluorescence at lambda(ab) = 403 nm and lambda(em) = 403 nm for S9(J) and lambda(ab) = 456 nm and lambda(em) = 463 nm for S11(J). On the other hand, absorption spectra of the S9(J) + S11(J) assemblies for X = 0.1-0.9 display two absorption bands, a shorter wavelength one and a longer wavelength one, whose peak positions are blue-shifted from those of the corresponding J-bands of the S9 J-aggregate and the S11 J-aggregate, respectively. Furthermore, fluorescence spectra are characterized by a single band (longer wavelength fluorescence) which is somewhat blue-shifted from the resonance fluorescence of the S11 J-aggregate. The fluorescence lifetimes of the S11 J-aggregate and isolated S11 molecules in LB films appear to be tau = 110 and 1900 ps, respectively, while the fluorescence lifetime of the longer wavelength fluorescence of the S9(J) + S11(J) assemblies takes practically a constant value of tau = 170-180 ps for X = 0.2-0.8. These observations would indicate that S9 and S11 molecules in the S9(J) + S11(J) assembly can form a specific mixed aggregate distinct from the individual S9 and S11 J-aggregates. From detailed considerations of the former works on luminescence properties of the S9 J-aggregate doped with isolated S11 molecules, as well as the mosaic-type mixed J-aggregate (M-aggregate) composed of a certain thiacyanine dye, 3,3'-disulfopropyl- 5,5'-dichlorothiacyanine sodium salt, and thiacarbocyanine dye, meso-substituted 3,3'-disulfopropyl-5,5'-dichlorothiacarbocyanine potassium salt, it is suggested that S9 and S11 can form a homogeneous aggregate of the persistence type (HP-aggregate). The HP-aggregate is distinguished from the M-aggregate because it is characterized by homogeneous mixing of two component dyes and persistence of two absorption bands.  相似文献   

8.
Herein we report an extraordinary three-photon absorption cross-section (sigma'3) enhancement in J-aggregates supramolecular systems. The much higher value of sigma'3 in PIC J-aggregate (2.5 x 10(-71) cm6 s2 ph(-2)) compared to typical values obtained in organic molecules (10(-80) cm6 s2 ph(-2)) is attributed to the strong molecular transition dipole moment coupling in the supramolecular assembly. Three-photon absorption of PIC J-aggregates and monomer aqueous solutions were measured using the well known open aperture Z-scan technique pumping with a 25 ps pulse laser-OPG system at 1720 nm. This novel result opens new expectations for applications of supramolecular systems in bioimaging and medicine.  相似文献   

9.
J-aggregates of indocyanine green sodium iodide in water are formed by heat treatment. Starting from a dimeric solution the activation energy of molecule attachment (Eatt ≈ 0.41 ev) to J-aggregates is determined by analysing the temperature dependence of the rate of J-aggregate absorption growth. The activation energy of molecule detachment (Edet ≈ 0.51 eV) from J-aggregates is deduced from the temperature dependent rate of J-aggregate absorption decrease after strong dilution.  相似文献   

10.
Exciton-coupled charge-transfer (CT) dynamics in TiO(2) nanoparticles (NP) sensitized with porphyrin J-aggregates has been studied by femtosecond time-resolved transient absorption spectroscopy. J-aggregates of 5,10,15-triphenyl-20-(3,4-dihydroxyphenyl) porphyrin (TPPcat) form CT complexes on TiO(2) NP surfaces. Catechol-mediated strong CT coupling between J-aggregate and TiO(2) NP facilitates interfacial exciton dissociation for electron injection into the conduction band of the TiO(2) nanoparticle in pulse width limited time (<80 fs). Here, the electron-transfer (<80 fs) process dominates over the intrinsic exciton-relaxation process (J-aggregates: ca. 200 fs) on account of exciton-coupled CT interaction. The parent hole on J-aggregates is delocalized through J-aggregate excitonic coherence. As a result, holes immobilized on J-aggregates are spatially less accessible to electrons injected into TiO(2) , and thus the back electron transfer (BET) process is slower than that of the monomer/TiO(2) system. The J-aggregate/porphyrin system shows exciton spectral and temporal properties for better charge separation in strongly coupled composite systems.  相似文献   

11.
3-Hydroxyflavone (3HF), a molecule that exhibits excited-state intramolecular proton transfer, has been studied for its fluorescence characteristics in dimyristoylphosphatidylcholine (DMPC) liposome membrane. 3HF partitions to the lipid bilayer membrane with a reasonably large partition coefficient. On excitation at 417 nm, a weak emission from the ground-state anion species was observed at 483 nm, whereas excitation at absorption maxima (345 nm) gives the usual intense fluorescence of the phototautomeric emission at 530 nm. In this article, we report the observation of a ground-state proton transfer reaction of 3HF in DMPC liposome membrane.  相似文献   

12.
By use of electrostatic interactions of dye molecules and poly(diallyldimethylammonium chloride) (PDDA), the spin-coating technique has been successfully applied to the preparation of stable J-aggregate thin films of thiacarbocyanine dyes on a polycarbonate or quartz plate. The J-aggregate thin films were prepared by the spin-coating of PDDA aqueous solution on dye thin films prepared on a substrate by the spin-coating of 2,2,3,3-tetrafluoro-1-propanol solution of dyes. Photophysical properties of the dye thin films and J-aggregate thin films were studied by measuring the fluorescence spectra, quantum yields, and lifetimes. Coherent size of the J-aggregates was estimated to be 3-12 by means of the absorption bandwidth (full width at half maximum) or radiative lifetime. Photostability of the J-aggregate thin films was also studied in terms of photodegradation efficiency under argon and oxygen in comparison with the dye thin films, and J-aggregate thin films were found to be more stable than the corresponding dye thin films.  相似文献   

13.
Spectral properties of carbocyanine dye 3-methyl-2-[3-methyl-2-(3-methyl-2,3-dihydro-1,3-benzothiazole-2-iliden)-1- butenyl]-1,3-benzothiazole-3-il iodide (Cyan betaiPr) in water solution, as well as in the presence of different types of double stranded DNA have been studied. While in water solution of 'free' dye Cyan betaiPr stays mainly in monomeric form, in the presence of DNA the dye molecules form J-aggregates. The molecular structure of these J-aggregates causes the Davydov splitting of their absorption band, corresponding to the first electronic transition. A study of site-specificity showed that in the presence of poly (dA/dT) the majority of Cyan betaiPr molecules form J-aggregates, while in the presence of poly (dGC/dGC) dye molecules stay mainly in monomeric form and in presence of chicken erythrocytes DNA both J-aggregate and monomeric forms of dye are present. We suppose that Cyan betaiPr molecules aggregate in DNA groove, which serves as a template for J-aggregate forming. An increase of ionic strength of solution leads to the release of dye molecules from DNA grooves and prevents J-aggregates formation.  相似文献   

14.
Interactions between low-molar mass analytes and phospholipid membranes were studied by liposome electrokinetic capillary chromatography (LEKC). The analytes were pesticides, some degradation products, and compounds associated with the manufacture of pesticides. Negatively charged liposome dispersions with different zwitterionic lipids (PC) were applied to the determination of retention factors (k) of 15 charged and uncharged compounds. The liposome dispersions consisted of 80:20 mol% of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/POPS, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/POPS. Retention factors were calculated from the effective electrophoretic mobilities of the analytes under LEKC and CZE conditions and from the effective electrophoretic mobilities of the liposomes, determined by CZE with a polyacrylamide-coated capillary. Determining the liposome mobilities in this way proved to be a good alternative to the conventional method employing a liposome marker compound. The log k values of the analytes for the different liposome dispersed phases were correlated with one another. In addition, correlation curves were determined between log k and calculated octanol-water partition coefficients. The results showed that the zwitterionic phospholipid in the liposome has a major impact on the interactions between the tested compounds and the lipid membranes.  相似文献   

15.
Herein we report on structural, morphological, and optical properties of homochiral and heterochiral J-aggregates that were created by nucleation-elongation assembly of atropo-enantiomerically pure and racemic perylene bisimides (PBIs), respectively. Our detailed studies with conformationally stable biphenoxy-bridged chiral PBIs by UV/Vis absorption, circular dichroism (CD) spectroscopy, and atomic force microscopy (AFM) revealed structurally as well as spectroscopically quite different kinds of J-aggregates for enantiomerically pure and racemic PBIs. AFM investigations showed that enantiopure PBIs form helical nanowires of unique diameter and large length-to-width ratio by self-recognition, while racemic PBIs provide irregular-sized particles by self-discrimination of the enantiomers at the stage of nucleation. Steady-state fluorescence spectroscopy studies revealed that the photoluminescence efficiency of homochiral J-aggregated nanowires (47±3%) is significantly higher than that of heterochiral J-aggregated particle-like aggregates (12±3%), which is explained in terms of highly ordered molecular stacking in one-dimensional nanowires of homochiral J-aggregates. Our present results demonstrate the high impact of homochirality on the construction of well-defined nanostructures with unique optical properties.  相似文献   

16.
J-aggregates of 2-hydroquinone-5,10,15,20-tetra(p-hydroxyphenyl)porphyrin (HQTHPP) induced by N-lauroyl sarcosine (SKL) in aqueous neutral solutions have been studied by optical absorption, fluorescence, and resonance light-scattering spectroscopies. As SKL concentration increases, the spectra evolve to reveal the presence of four independent species with relative concentration. The most important species is J-aggregates. The J-aggregates have two strong exciton bands corresponding to the B-band and Q-bands of HQTHPP monomers, and are found to be stable when the surfactant concentration is below 8.0 mmol/L. But above 8.0 mmol/L, the J-aggregates dissolve gradually into another species: porphyrin monomers. The total fluorescence of HQTHPP is quenched due to the aggregate formation. A strong and sharply peaked resonance light-scattering signal (>1800 counts/s, centered at 490 nm) is observed just slightly to the red of the J-aggregate absorption maximum. In the case of cetyltrimethyl-ammonium bromide, increasing surfactant concentrations have only shown to favor solubilization of porphyrin monomers. Evidently, the nature of polar headgroups of surfactants influences the tendency of THPP to aggregate.  相似文献   

17.
Watarai H  Mitani K  Morooka N  Takechi H 《The Analyst》2012,137(14):3238-3241
The J-aggregate of diprotonated tetraphenylporphyrin (H(4)TPP(2+)) formed at the dodecane-water interface showed circular dichroism spectra corresponding to the chirality of 2-alkyl alcohols, longer than 2-butanol, added to the dodecane phase. The phenomenon suggested the preferential interaction between the nano-sized J-aggregates and the chiral alcohols at the interface, and provided a potential use of the J-nanoaggregate as a chiral recognition probe.  相似文献   

18.
To tailor functional nanomaterials, the co-assembly of self-assembling dyes in a homogeneous way would be a promising approach because the electronic properties can be tuned by the mixing ratio. Although porphyrins are important supramolecular building blocks with unique optical properties, a homogeneously mixed J-aggregate system of porphyrins has not been reported yet. Herein, we focused on three kinds of zwitterionic porphyrin diacids, H(4)TSPP(2-), H(4)T(5-STh)P(2-) and H(4)T(4-STh)P(2-), due to their capability to form J-aggregates with distinguished optical properties and well-defined nanostructures. In this study, we investigated the co-assembly behaviours of the zwitterionic porphyrins in aqueous solution by UV-vis and RLS, and investigated the morphology of the resultant homogeneously mixed J-aggregates by AFM. In the case of the combination of H(4)TSPP(2-) and H(4)T(5-STh)P(2-), they readily co-assemble to form homogeneously mixed J-aggregates with different types of binary excitonic bands, whereas the combination of H(4)T(4-STh)P(2-) and other porphyrins results in the dominant formation of the individual pure J-aggregates. Deposited homogeneously mixed J-aggregates of H(4)TSPP(2-) with H(4)T(5-STh)P(2-) consist of rod-shaped nanostructures, whose height changes discontinuously upon varying the mixing ratio. These results would provide new insights into the electronic properties and the nanostructure of self-assembled multicomponent materials.  相似文献   

19.
The photochemistry of cyanine J-aggregates on the surface of colloidal Ag nanoparticles is reported. The photochemistry is initiated through ultrafast photoexcitation of the plasmon band in Ag nanoparticles, producing an enhanced near-field that interacts with the J-aggregate monolayer. Through transient absorption spectroscopy, we show that photoexcitation of the plasmon in Ag nanoparticles leads to exciton dynamics that differ strongly from J-aggregates alone or for J-aggregate monolayers on bulk metal surfaces. Specifically, charge-separated states with a lifetime of approximately 300 ps between the J-aggregate and Ag colloid are formed. The reduction of the Ag nanoparticles is shown to be a multielectron process.  相似文献   

20.
An investigation of liposomes comprised of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipids with cholesterol and zinc phthalocyanine (ZnPC) revealed that several fundamental liposome properties are influenced by composition and by lipid-specific features. DMPC and DSPC liposomes were synthesized, and their compositional changes, encapsulation capacities, morphologies, and release properties were evaluated. In this research, liposome degradation, lysis, and content release were initiated by photolysis, i.e., rupture induced by exposure to light. A controlled release mechanism was created through the introduction of photosensitizers (i.e., ZnPC) embedded within the cholesterol-stabilized liposome membrane. The light wavelength and light exposure time accelerated photodegradation properties of DMPC liposomes compared to DSPC liposomes, which exhibited a slower release rate. Morphological changes in the liposomes were strongly influenced by light wavelength and light exposure time. For both the DMPC and DSPC liposomes, visible light with wavelengths in the red end of the spectrum and broad spectrum ambient lighting (400?C700?nm) were more effective for lysis than UV-A light (365?nm). Heating liposomes to 100?°C decreased the stability of liposomes compared to liposomes kept at room temperatures. In addition, the optimal lipid-to-cholesterol-to-photoactivator ratio that produced the most stable liposomes was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号