首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xing-Tao An 《Physics letters. A》2008,372(45):6790-6796
Spin polarization in parallel double quantum dots embedded in arms of Aharonov-Bohm interferometer is investigated. The spin-orbit interaction exists in quantum dots. We find that the spin polarization is quite large even with a weak spin-orbit interaction. The direction and the strength of the spin polarization are well controllable and manipulatable by simply varying the strength of spin-orbit interaction or the energy levels in quantum dots. Moreover, electron-electron interaction strengthens the spin accumulation when the energy levels of the two quantum dots are identical. As the energy levels are unequal, electron-electron interaction cannot increase the spin accumulation. It is worth mentioning that the device is free of a magnetic field or a ferromagnetic material and it can be easily realized with present technology.  相似文献   

2.
A simple theoretical approach based on Coulomb-Volkov states is introduced to predict ionisation of atoms by intense laser pulses in cases where the effective interaction time does not exceed one or two optical cycles [M. Nisoli et al., Opt. Lett. 22, 522 (1997)]. Under these conditions, the energy distributions of ejected electrons predicted by this non-perturbative approach are in very good agreement with “exact" results obtained by a full numerical treatment. The agreement is all the better that the principal quantum number of the initial state is high. For very strong fields, most electrons are ejected at an energy which is close to the classical kinetic energy that would be transferred to free electrons by the electromagnetic field during the pulse. The power of the present approach appears when keV. In this region, full numerical treatments become very lengthy and finally do not converge. However, the present Coulomb-Volkov theory still makes reliable predictions in very short computer times. Received 19 November 1999 and Received in final form 19 January 2000  相似文献   

3.
We describe how tightly confining magnetic waveguides for atoms can be created with microfabricated or nanofabricated wires. Rubidium atoms guided in the devices we have fabricated would have a transverse mode energy spacing of K. We discuss the creation of a single-mode waveguide for atom interferometry whose depth is comparable to magneto-optical trap (MOT) temperatures. We also discuss the application of microfabricated waveguides to low-dimensional systems of quantum degenerate gases, and show that confinement can be strong enough to observe fermionization in a strongly interacting bosonic ensemble. Received 1st December 1998 and Received in final form 23 February 1999  相似文献   

4.
By placing changeable nanofabricated structures (wires, dots, etc.) on an atom mirror one can design guiding and trapping potentials for atoms. These potentials are similar to the electrostatic potentials which trap and guide electrons in semiconductor quantum devices like quantum wires and quantum dots. This technique will allow the fabrication of nanoscale atom optical devices. Received: 28 October 1997 / Revised: 17 February 1998 / Accepted: 17 July 1998  相似文献   

5.
吴歆宇  韩伟华  杨富华 《物理学报》2019,68(8):87301-087301
在小于10 nm的沟道空间中,杂质数目和杂质波动范围变得十分有限,这对器件性能有很大的影响.局域纳米空间中的电离杂质还能够展现出量子点特性,为电荷输运提供两个分立的杂质能级.利用杂质原子作为量子输运构件的硅纳米结构晶体管有望成为未来量子计算电路的基本组成器件.本文结合安德森定域化理论和Hubbard带模型对单个、分立和耦合杂质原子系统中的量子输运特性进行了综述,系统介绍了提升杂质原子晶体管工作温度的方法.  相似文献   

6.
Electronic structure of three-dimensional quantum dots   总被引:1,自引:0,他引:1  
We study the electronic structure of three-dimensional quantum dots using the Hartree-Fock approximation. The confining potential of the electrons in the quantum dot is assumed to be spatially isotropic and harmonic. For up to 40 interacting electrons the ground-state energies and ground-state wavefunctions are calculated at various interaction strengths. The quadrupole moments and electron densities in the quantum dot are computed. Hund's rule is confirmed and a shell structure is identified via the addition energies and the quadrupole moments. While most of the shell structure can be understood on the basis of the unperturbed non-interacting problem, the interplay of an avoided crossing and the Coulomb interaction results in an unexpected closed shell for 19 electrons. Received 5 November 2001 / Received in final form 12 November 2002 Published online 1st April 2003 RID="a" ID="a"e-mail: vorrath@physnet.uni-hamburg.de  相似文献   

7.
The peculiarities of a low temperature heat transfer through a ballistic quantum dot (a double potential barrier) with interacting leads due to a long-range Coulomb interaction (in the geometrical capacitance approach) are considered. It is found that the thermal conductance K shows periodic peaks as a function of the electrostatic potential of a dot at low temperatures. At the peak maximum it is whereas near the minimum it is . Near the peak maximum the dependence K(T) is essentially nonmonotonic at the temperatures correspondent to the level spacing in the quantum dot. Received 20 October 1999 and Received in final form 20 January 2000  相似文献   

8.
Self-organised Ge dot superlattices grown by molecular beam epitaxy of Ge and Si layers utilizing Stranski-Krastanov growth mode were investigated by Raman spectroscopy. An average size of Ge quantum dots was obtained from transmission electron microscopy measurements. The strain and interdiffusion of Ge and Si atoms in Ge quantum dots were estimated from the analysis of frequency positions of optical phonons observed in the Raman spectra. Raman scattering by folded longitudinal acoustic phonons in the Ge dot superlattices was observed and explained using of elastic continuum theory. Received 25 January 2000  相似文献   

9.
Exact many-body methods as well as current-spin-density functional theory are used to study the magnetism and electron localization in two-dimensional quantum dots and quasi-one-dimensional quantum rings. Predictions of broken-symmetry solutions within the density functional model are confirmed by exact configuration interaction (CI) calculations: In a quantum ring the electrons localize to form an antiferromagnetic chain which can be described with a simple model Hamiltonian. In a quantum dot the magnetic field localizes the electrons as predicted with the density functional approach. Received 5 December 2000  相似文献   

10.
Quantum dots with a three-dimensional confining potential, i.e. “spherical” quantum dots, are considered with inclusion of electron-electron interaction (a quantum analog of the Thomson atom). The energy spectrum of two-electron parabolic quantum dots has been determined by numerical diagonalization of the full Hamiltonian in a one-particle basis. Fiz. Tverd. Tela (St. Petersburg) 40, 2134–2135 (November 1998)  相似文献   

11.
A new method is proposed for calculating the energy spectrum and the wave functions of N-electron quantum dots with an arbitrary confining potential. The method consists in expansion with respect to a dimensionless quantum parameter 1/Q, which is expressed in terms of the ratio of the characteristic Coulomb energy of electron-electron interaction to the characteristic energy of one-particle transition in a confining potential. Two-electron quantum dots with a parabolic confining potential in an external magnetic field are considered. Strongly correlated states of the system and the spin rearrangement in a strong magnetic field are analyzed. Analytic expressions are obtained for the energy and the wave functions of the system. It is shown that restriction of the analysis only to the first three terms in the quantum-parameter expansion gives an accuracy of one percent when calculating the energy even for values of Q on the order of unity, i.e., for the presently implementable GaAs quantum dots. The expressions for energy obtained are in a good agreement with the experimental data for quantum dots in a perpendicular magnetic field.  相似文献   

12.
We study the difference between on site Hubbard and long range Coulomb repulsions for two interacting particles in a disordered chain. The system size L (in units of the lattice spacing) is of the order of the one particle localization length and the energies are taken near the band center. In the two cases, the limits of weak and strong interactions are characterized by uncorrelated energy levels and are separated by a crossover regime where the states are more extended and the spectra more rigid. U denoting the interaction strength and t the kinetic energy scale, the crossovers take place for interaction energy to kinetic energy ratios U/t and U/(2tL) of order one, for Hubbard and Coulomb repulsions respectively. While Hubbard repulsion can only yield weak critical chaos with intermediate spectral statistics, Coulomb repulsion can drive the two particle system to quantum chaos with Wigner-Dyson spectral statistics. The interaction matrix elements are studied to explain this difference. Received 21 March 2000 and Received in final form 5 February 2001  相似文献   

13.
Short notices     
Quantum dots are nanometre-sized clusters of semiconductor material which confine electrons in all three directions. The physics of quantum dots are dominated by quantization: there are discrete energy levels, as in real atoms. Quantum dots can now be self-assembled directly in the growth of inorganic semiconductors, and this discovery has fuelled an explosion in the interest in this field. A review of some of this work is presented, concentrating on the optical properties of quantum dots, and possible applications for photonic devices.  相似文献   

14.
We present calculations of differential, integrated elastic, total, momentum transfer cross-sections and spin-polarization parameters S, T and U for scattering of electrons from Eu and Bi atoms in the energy range 2.0 to 500.0 eV using semi-relativistic approach. The target-projectile interaction is represented both by real and complex parameter-free optical potentials in the solution of Dirac equation for the scattered electrons. The results for the differential cross-sections and spin-polarization parameters have been compared with the available calculations and experimental results. Received 17 February 2000 and Received in final form 15 June 2000  相似文献   

15.
We study magnetism in magnetically doped quantum dots as a function of the confining potential, particle numbers, temperature, and strength of the Coulomb interactions. We explore the possibility of tailoring magnetism by controlling the nonparabolicity of the confinement potential and the electron-electron Coulomb interaction, without changing the number of particles. The interplay of strong Coulomb interactions and quantum confinement leads to enhanced inhomogeneous magnetization which persists at higher temperatures than in the noninteracting case. The temperature of the onset of magnetization can be controlled by changing the number of particles as well as by modifying the quantum confinement and the strength of the Coulomb interactions. We predict a series of electronic spin transitions which arise from the competition between the many-body gap and magnetic thermal fluctuations.  相似文献   

16.
The photoionization of metal clusters in intense femtosecond laser fields has been studied. In contrast to an experiment on atoms, the interaction in this case leads to a very efficient and high charging of the particle where tens of electrons per atom are ejected from the cluster. The recoil energy distribution of the atomic fragment ions was measured which in the case of lead clusters exceeds 180 keV. Enhanced charging efficiency which we observed earlier for specific pulse conditions is not reflected in the recoil energy spectra. Both the average and the maximum energies decrease with increasing laser pulse width. This is in good agreement with molecular dynamics calculations. Received 20 December 2000  相似文献   

17.
The effects of direct Coulomb and exchange interactions on spin states are studied for quantum dots contained in circular and rectangular mesas. For a circular mesa a spin-triplet favored by these interactions is observed at zero and nonzero magnetic fields. We tune and measure the relative strengths of these interactions as a function of the number of confined electrons. We find that electrons tend to have parallel spins when they occupy nearly degenerate single-particle states. We use a magnetic field to adjust the single-particle state degeneracy, and find that the spin-configurations in an arbitrary magnetic field are well explained in terms of two-electron singlet and triplet states. For a rectangular mesa we observe no signatures of the spin-triplet at zero magnetic field. Due to the anisotropy in the lateral confinement single-particle state degeneracy present in the circular mesa is lifted, and Coulomb interactions become weak. We evaluate the degree of the anisotropy by measuring the magnetic field dependence of the energy spectrum for the ground and excited states, and find that at zero magnetic field the spin-singlet is more significantly favored by the lifting of level degeneracy than by the reduction in the Coulomb interaction. We also find that the spin-triplet is recovered by adjusting the level degeneracy with magnetic field. Received: 14 April 2000 / Accepted: 17 April 2000 / Published online: 6 September 2000  相似文献   

18.
An exactly solvable local Thomas-Fermi-Dirac approximation is applied to the calculation of the ground-state density of three-dimensional quantum dot arrays, where we give estimates to properties like total energy, chemical potential, and differential capacitance. Numeric examples are calculated for pairs of quantum dots using a Gaussian confining potential. The computational complexity of the present method is linear in the number of electrons and centers of the system.  相似文献   

19.
We report on the non-linear electric field effect in the conductivity of disordered conductors. We find that the electron-electron interaction in the particle-hole triplet channel strongly affects the non-linear conductivity. The non-linear effect introduces a field dependent temperature scale TE and provides a microscopic mechanism for electric field scaling at the metal-insulator transition. We also study the magnetic field dependence of the non-linear conductivity and suggest possible ways to experimentally verify our predictions. These effects offer a new probe to test the role of quantum interference at the metal-insulator transition in disordered conductors. Received 9 February 2000  相似文献   

20.
Samples of borosilicate glasses doped by CdS with concentrations smaller than 1% are studied. It is shown that, due to a disorder at interfaces of quantum dots, the main channels of emission of excitons by quantum dots are the annihilation of excitons in quantum and localized surface states, while the efficiency of interaction between the channels largely depends on the radius of quantum dots. It is found for the first time that states that form the second emission channel are not discrete energy levels in the band gap, as is usually assumed in some experimental and theoretical works, but rather form a quasi-continuous tail of the density of localized states. These localized states appear as a result of dangling bonds of outer atoms of quantum dots. Energy relaxation of carriers via localized states is the reason for a long response time of these structures to an external action and can be enhanced due to a polarization effect caused by different dielectric constants of materials of quantum dots and matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号