首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Parametric resonance is one of the common types of instability of mechanical systems [1]. A standard example of the equations describing parametric oscillations is the Mathieu equation and its generalizations. In hydrodynamics these oscillations have been closely studied in connection with the problem of the vertical oscillations of a vessel containing an incompressible fluid in a uniform gravity field [1–5]. In this paper a new example of a flow whose stability problem reduces to the Mathieu equation is given. This is a flow of special type in a rotating cylindrical channel. The direction of the angular velocity is perpendicular to the channel axis, and its magnitude varies periodically with time. Flows with this geometry are of potential interest in technical applications [6, 7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 175–177, March–April, 1987.  相似文献   

2.
A series of papers has been devoted to questions of gas bubble dynamics in viscoeiastic liquids. Of these papers we mention [1–4]. The radial oscillations of a gas bubble in an incompressible viscoeiastic liquid have been studied numerically in [1, 2] using Oldroyd's model [5]. Anexact solution was found in [3], and independently in [4], for the equation of small density oscillations of a cavity in an Oldroyd medium when there is a periodic pressure change at infinity. The analysis of bubble oscillations in a viscoeiastic liquid is complicated by properties of limiting transitions in the rheological equation of the medium. These properties are of particular interest for the problem under investigation. These properties are discussed below, and characteristics of the small oscillations of a bubble in an Oldroyd medium are investigated on the basis of a numerical analysis of the exact solution obtained in [3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 82–87, May–June, 1976.The authors are grateful to V. N. Nikolaevskii for useful advice and for discussing the results.  相似文献   

3.
The main hydrodynamic coefficients of equations, describing large oscillations of an ideal incompressible and homogeneous liquid in tanks having the form of a cylindrical sector are calculated. Nonlinear oscillations of a liquid in cylindrical containers have been investigated in [1–3]. Here we use the method of solving some nonlinear problems of the oscillations of an ideal liquid in arbitrary containers, proposed in [4]. The dependence of the calculated coefficients on the geometrical parameters of the tank, which is important in practical applications, is analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 124–131, September–October, 1970.The authors thank G. S. Narimanov for attention and advice.  相似文献   

4.
Ngo Zui Kan 《Fluid Dynamics》1980,15(3):425-429
A numerical calculation is made of small oscillations of a viscous incompressible fluid that fills half of a horizontal cylindrical channel. The calculation is made with and without allowance for surface tension. The results of the calculation show that allowance for surface tension increases the damping of the oscillations. The general properties of problems of the normal oscillations of a heavy and capillary viscous incompressible fluid were studied in [1–3], in which the possibility of applying the Bubnov-Galerkin method to these problems was pointed out. A method for calculating the oscillations of a viscous incompressible fluid that partly fills an arbitrary vessel at large Reynolds numbers was developed in [3–5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 128–132, May–June, 1980.  相似文献   

5.
The problem of determining the frequencies and forms of small natural oscillations of an ideal liquid in a cylindrical vessel under conditions close to weightlessness is examined. It is assumed that a weak homogeneous gravitational field acts parallel to the vertical generatrix forming the cylinder. In contrast to [1], where only the first antisymmetric oscillation frequency is found for a semiinfinite cylindrical vessel, the frequencies of several axiosymmetric, antisymmetric, etc. oscillations are obtained as functions of the gravitational-field intensity and other parameters of the problem. The Ritz method is employed for two different variations of the problem, equivalent to that of oscillations of an ideal liquid under conditions of weightlessness [1–5].Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 3–13, March–April, 1973.  相似文献   

6.
The oscillations of a rigid body having a cavity partially filled with an ideal fluid have been studied in numerous reports, for example, [1–6]. Certain analogous problems in the case of a viscous fluid for particular shapes of the cavity were considered in [6, 7]. The general equations of motion of a rigid body having a cavity partially filled with a viscous liquid were derived in [8]. These equations were obtained for a cavity of arbitrary form under the following assumptions: 1) the body and the liquid perform small oscillations (linear approximation applicable); 2) the Reynolds number is large (viscosity is small). In the case of an ideal liquid the equations of [8] become the previously known equations of [2–6]. In the present paper, on the basis of the equations of [8], we study the free and the forced oscillations of a body with a cavity (vessel) which is partially filled with a viscous liquid. For simplicity we consider translational oscillations of a body with a liquid, since even in this case the characteristic mechanical properties of the system resulting from the viscosity of the liquid and the presence of a free surface manifest themselves.The solutions are obtained for a cavity of arbitrary shape. We then consider some specific cavity shapes.  相似文献   

7.
It is well known that a periodic change in the equilibrium or flow parameters of an incompressible liquid exerts a material influence on the hydrodynamic stability. As an example we may quote the parametric excitation of surface waves (gravitational-capillary [1], electrohydrodynamic [2], magnetohydrodynamic [3]) and the oscillations of liquid in communicating vessels [4, 5]. The chief object of the foregoing experimental investigations was that of determining the boundaries of the regions of unstable equilibrium with respect to small perturbations. In the present investigation we made an experimental study of the parametric resonance and finite-amplitude parametric oscillations arising in a liquid-filled U-tube subject to alternating vertical overloadings. We shall describe two forms of oscillations in the liquid, and we shall determine the corresponding ranges of unstable equilibrium with respect to small random perturbations (self-excitation) and also to finite-amplitude perturbations. We shall study nonlinear modes of excitation and mutual transitions between the two forms of oscillations. We shall find the ranges of existence of steady-state oscillations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 36–42, March–April, 1976.The authors wish to thank G. I. Petrova and the participants in his seminar for useful discussions, and S. S. Grigoryan for valuable advice.  相似文献   

8.
The propagation of nonstationary weak shock waves in a chemically active medium is essentially dispersive and dissipative. The equations for short-wavelength waves for such media were obtained and investigated in [1–4]. It is of interest to study quasimonochromatic waves with slowly varying amplitude and phase. A general method for obtaining the equations for modulated oscillations in nonlinear dispersive media without dissipation was proposed in [5–8]. In the present paper, for a dispersive, weakly nonlinear and weakly dissipative medium we derive in the three-dimensional formulation equations for waves of short wavelength and a Schrödinger equation, which describes slow modulations of the amplitude and phase of an arbitrary wave. The coefficients of the equations are particularized for the considered gas-liquid mixture. Solutions are obtained for narrow beams in a given defocusing medium as well as linear and nonlinear solutions in the neighborhood of a diffraction beam. A solution near a caustic for quasimonochromatic waves was found in [9].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 133–143, January–February, 1980.  相似文献   

9.
The development of three-dimensional waves generated by a region of pressures moving uniformly and rectilinearly over the surface of a thin elastic isotropic plate covering an ideal fluid layer of finite depth is investigated. The pressures act starting at a certain instant. A qualitative similarity between the waves occurring and gravity-capillary waves is noted. The calculations are made for an ice cover. This model problem permits examining a number of properties of the oscillations of the ice cover occurring when hauling freight over ice roads, landing and takeoff of aircraft from ice fields, etc. [1]. The development of ship waves in a fluid of finite depth in the absence of a floating plate was investigated in [2, 3] and gravity-capillary waves were studied in [4–6]. Certain properties of steady three-dimensional waves occurring during movement of a load over the surface of a floating elastic plate were established in [1].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 26–32, September–October, 1978.  相似文献   

10.
Many articles have appeared on the problems of small oscillations of an ideal liquid acted upon by surface-tension forces. Oscillations of a liquid with a single free surface are treated in [1, 2]. Oscillations of an arbitrary number of immiscible liquids bounded by equilibrium surfaces on which only zero volume oscillations are assumed possible are investigated in [3], We consider below the problem of the oscillations of an ideal liquid with two free surfaces on each of which nonzero volume disturbances are kinematically possible. The disturbances satisfy the condition of constant total volume. A method of solution is presented. The problem of axisymmetric oscillations of a liquid sphere in contact with the periphery of a circular opening is considered neglecting gravity. The first two eigenfrequencies and oscillatory modes are found.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 64–71, May–June, 1976.In conclusion, the author thanks F. L. Chernous'ko for posing the problem and for his attention to the work.  相似文献   

11.
The effect of a rigid bottom of periodic form on small periodic oscillations of the free surface of a liquid is considered with the assumption of low amplitude roughness. The methodologically most significant study in this direction, [1], will be utilized. In [1] the steady-state problem for flow over an arbitrarily rough bottom was studied. Other studies have recently appeared on small free oscillations above a rough bottom. Essentially these have considered the effect of underwater obstacles and cavities on surface waves in the shallow-water approximation (for example, [2], [3]). Liquid oscillations in a layer of arbitrary depth slowly varying with length were considered in [4]. However, these results cannot be applied to the study of resonant interaction of gravitational waves with a periodically curved bottom.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 43–48, July–August, 1984.  相似文献   

12.
In the framework of the Hromek-Lamb equations we investigate the axially symmetric vortical flow of a nonviscous incompressible liquid in both semiinfinite and infinite gaps between two coaxial circular cylinders. The investigation is carried out for two circulation and flow functions and two different Bernoulli constants which are chosen in the form of a third-order polynomial in the flow function. This makes it possible to determine the effect of the azimuthal velocity component on the flow in an axial plane with radial and axial components of the velocity. It is shown that under certain circumstances wave oscillations in the flow are possible, in agreement with the results of [1–3] which investigated the flow in an infinite tube [1], in a semiinfinite tube with simpler circulation functions and Bernoulli constants [2], and in the two-dimensional case [3]. We determine the dependence of the formation of wave perturbations on the third term of the Bernoulli constant and on the azimuthal velocity component. The results of this work agree with investigations by other authors [1–4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 38–45, September–October, 1977.The author thanks Yu. P. Gupalo and Yu. S. Ryazantsev for suggesting this problem and for their interest in the work. Thanks are also due to G. Yu. Stepanov for discussions and valuable comments.  相似文献   

13.
Unsteady-state plane radial flow induced by a well in a thin deformable stratum is studied taking into account the stratum interaction with the adjacent rocks. The stratum permeability is assumed to depend on the lateral deformation. The behavior of the well productivity properties for harmonic reservoir pressure oscillations and after pressure drawdown in a bilayered stratum is analyzed. Steady-state well behavior under these conditions was studied in [1]. A qualitative estimate of the well productivity variation due to a stepwise pressure change in an adjacent stratum was previously derived in [2].Kazan'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 85–90, January–February, 1996.  相似文献   

14.
The effect of nonequilibrium physicochemical processes on the flow resulting from the normal collision and reflection of shock waves is studied by the example of nonequilibrium excitation of molecular oscillations in nitrogen. It is shown that the thermal effect of vibrational relaxation is small and the problem can be linearized around a known solution [1]. A similar approach to the solution of the problem of flow around a wedge and certain one-dimensional non-steady-state problems was used earlier in [2–4]. The solution of these problems was constructed in an angular domain, bounded by the shock wave and a solid wall (or the contact surface) and was reduced to a well-known functional equation [6]. The solution of this problem, because of the presence of two angular domains divided by a tangential discontinuity, reduces to a functional equation of more general form than in [6]. The results are obtained in finite form. In the special case of shocks of equal intensity, the normal reflection parameters are obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 90–96, July–August, 1976.  相似文献   

15.
A study is made in the quasione-dimensional inertialess approximation of the axisymmetric flow of a Newtonian fluid in a tube of finite length made of a nonlinear active material with the capability of reducing deformations in response to an increase in tensile stresses [1, 2]. A study is made of the influence of the frequency and amplitude of forced oscillations of pressure at the entrance of the tube on its flow rate characteristics and on the behavior of the tube, depending on its length and certain rheological parameters. The first attempts at a study within the framework of this model of flow for unsteady conditions at the ends of the tube and in the ambient medium are described in [3, 4]. A general solution of this problem for external periodic disturbances of low amplitude is constructed in [5]. The present study gives an analysis of certain results of the numerical solution of an analogous problem for a wide range of variations in the frequency and amplitude of the pressure oscillations at the entrance to the tube.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 88–90, March–April, 1985.  相似文献   

16.
The limiting amplitudes of acoustic oscillations in a cylindrical volume of a heat releasing medium in which one or several modes are unstable in the linear approximation are determined. One of the mechanisms limiting the amplitudes of unstable acoustic modes is the transfer of energy from them to damped modes by nonlinear interaction. The nonlinear interactions of plane acoustic waves in a long channel have been considered by Artamonov and Vorob'ev [1]; in the present paper, the interaction of mixed longitudinal—transverse acoustic modes in a closed cylindrical volume is considered. The equations describing the interaction of two and three longitudinal—transverse modes are derived and investigated in the quadratic approximation by the method of slowly varying amplitudes and phases of the oscillations [2]. The treatment is applicable to a high-temperature gas, for which general stability conditions in the linear approximation have been formulated by Artamonov [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 3–9, September–October, 1982.I should like to express my thanks to K. I. Artamonov (deceased) for suggesting the problem and for scientific supervision and A. P. Vorob'ev for constant interest in the work and helpful advice.  相似文献   

17.
The laminar-turbulent transition zone is investigated for a broad class of jet flows. The problem is considered in terms of the inviscid model. The solution of the initial-boundary value problem for three-dimensional unsteady Euler equations is found by the Bubnov-Galerkin method using the generalized Rayleigh approach [1–4]. The occurrence, subsequent nonlinear evolution and interaction of two-dimensional wave disturbances are studied, together with their secondary instability with respect to three-dimensional disturbances.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 8–19, September–October, 1985.  相似文献   

18.
The instability of a Kirchhoff vortex [1–3] with respect to three-dimensional perturbations is considered in the linear approximation. The method of successive approximations is applied in the form described in [4–6]. The eccentricity of the core is used as a small parameter. The analysis is restricted to the calculation of the first two approximations. It is shown that exponentially increasing perturbations of the same type as previously predicted and observed in rotating flows in vessels of elliptic cross section [4–9] appear even in the first approximation. As distinct from the case of plane perturbations [1-3], where there is a critical value of the core eccentricity separating the stable and unstable flow regimes, instability is predicted for arbitrarily small eccentricity.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 40–45, May–June, 1988.  相似文献   

19.
This study investigates the plane linear problem of steady-state internal waves in an ideal incompressible liquid with nonuniform density. The waves are generated by surface pressures applied in a bounded region which moves at constant velocity. It is assumed that the density in the unperturbed state varies continuously with depth, remaining constant in the upper and lower layers and varying according to an exponential law in the middle layer. The problem may be regarded, in particular, as a hydrodynamic model for the study of internal waves produced by a cyclone moving over the surface of the ocean. Analogous investigations for a homogeneous liquid were carried out in [1–3]; internal waves for a liquid with the above-mentioned law of density variation but with stationary pressure changes which are periodic with respect to time were studied in [4]. Problems analogous to the one considered here, both for exponential variation of density in the entire layer and for the case of a nonuniform layer near the surface, were investigated in [5, 6]. An analysis of non-linear waves of the steady-state type with arbitrary distribution of vorticity and density with respect to depth was carried out in [7, 8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 55–62, November–December, 1973.  相似文献   

20.
We solve the problem of the natural oscillations of a gas flowing past a cascade of flat plates under the Joukowsky-Chaplygin condition that the velocity at the trailing edge of the profiles is finite. In this case part of the energy of the oscillating gas is consumed in the formation of a trailing vortex. The corresponding eigenvalues of the problem are complex and so the natural oscillations of the gas are damped. The computational results are compared with the results of experimental investigation of acoustic resonance in flow past a cascade of flat plates obtained by Parker [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 84–88, September–October, 1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号