首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
对于布里渊分布式光纤传感器(DOFS),温度或应变的变化都会引起布里渊频移谱改变,因此存在交叉敏感问题。在以往对布里渊光时域反射(BOTDR)计的双参量传感研究中,采用单根光纤,通过同时检测布里渊频移和功率变化,实现双参量传感。但对于布里渊光时域分析(BOTDA),由于受激布里渊散射的偏振相关性,不能实现对受激散射光功率的准确检测,因此难以实现单光纤的双参量传感。针对这一问题采用温度和应变系数不同的双光纤进行双参量传感。先测量了几种常用光纤的温度和应变布里渊频移系数,然后选择G652和G652成缆两种光纤,通过构建系数矩阵,由两根光纤的布里渊频移计算得出温度和应力,从而实现了温度分辨率25℃左右,应变分辨率约为200με的双参量传感。  相似文献   

2.
3.
由于布里渊光时域反射(BOTDR)系统中布里渊散射信号非常微弱,常常导致传感距离受限,进而影响系统的信噪比和测量精度。因此,提出对BOTDR系统中布里渊散射信号的前向和后向拉曼放大进行研究。实验结果表明,后向抽运拉曼放大的受激布里渊散射(SBS)阈值要比前向抽运的高;当抽运功率为700mW时,前向抽运放大增益可达13.78dB,随后出现二阶布里渊散射谱线,使得放大增益开始下降;当抽运功率为1000mW时,后向抽运放大增益可达16.33dB,随后放大增益仍有增长的趋势,有利于对布里渊背向散射信号持续放大。  相似文献   

4.
单激光源布里渊光学时域放大系统的光路结构   总被引:1,自引:1,他引:0  
提出了一种单激光源的布里渊光学时域放大(BOTDA)系统的光路结构,只需用到1台激光器,且扫频范围由高频微波频率(约11 GHz)降为中短波频率(MHz),节省了成本.建立了相应的实验系统,将传感光纤置于温控箱中进行实验,获取了布里渊散射信号随温度变化的实验数据.推导出传感光纤两端入射光频差恒定时布里渊散射信号与温度间...  相似文献   

5.
6.
基于布里渊效应的连续分布式光纤传感技术   总被引:2,自引:0,他引:2  
基于布里渊效应的光纤传感(BEOFS)技术具有长距离、高精度、连续分布式、多参量传感的独特优点,在介绍BEOFS技术的原理、发展现状以及重要应用领域的基础上,对实现长距离、高精度、快速分布式布里渊光纤传感的关键技术进行研究和探讨,给出了提高系统传感速度的方案.  相似文献   

7.
基于布里渊光时域分析(BOTDA)的分布式光纤传感系统可以实现温度、应变等参量的测量,同时具有超长传感距离、高空间分辨率和高精度等优势,已广泛应用于基础设施、航天工程等领域中的结构健康监测.然而,BOTDA传感系统存在温度和应变交叉敏感问题,导致温度和应变的变化在测量过程中难以区分,严重制约了系统传感监测能力.针对该问...  相似文献   

8.
布里渊光时域分析(BOTDA)在分布式光纤传感系统中展现出独特的优势并得到了广泛的关注,对BOTDA传感系统的温度分布信息进行快速且精确的提取至关重要.随着机器学习算法的快速发展,其在BOTDA传感系统的温度分布信息的提取中展现出巨大潜力.首先,阐述了BOTDA传感系统温度测量的原理.接着,介绍了几种基于机器学习的算法...  相似文献   

9.
通过有限元分析软件对硬质聚氯乙烯材料支吊架结构管道建立模型,采用中央竖直向下施加静态持续载荷方式进行力学仿真。将传感光纤沿轴向直线排布在模拟管道顶部、底部和侧部,通过粘贴传感器将管道外表面应变传递至传感光纤,并采用布里渊光时域分析仪对不同载荷下管道的应变变化进行监测。结果表明:管道轴向方向到管道底部为拉伸正应变,顶部为压缩负应变,侧部中线的应变基本不变;管道中段的应变最大,向管道两端的应变逐渐减小,距离管道端部0.6 m处的应变趋于0。此外,油气管道中段底部的应变灵敏度为顶部的3.3倍,为支撑端的5.5倍。  相似文献   

10.
基于布里渊光时域分析分布式光纤漏油传感器   总被引:1,自引:1,他引:0  
尉婷 《光电子.激光》2017,28(5):492-496
研究了一种新型基于布里渊光时域分析(BOTDA )的光纤漏油传感器,可在min量级发现小规模 漏油事件,主要用于长距离输油管线、油库等场所的实时漏油监测。通过模拟监测输油管道 输运状态,将 光纤埋敷于特种油敏材料中沿输油管线铺设,用BOTDA仪实时监测光纤布 里渊频移,可快速发 现并定位漏油事件。实验证明了本文技术的可行性,能够在10min内 准确定位小规 模漏油事 件,采用DiTeStSTA-R系列BOTDA仪,在1.7km的传感光纤上实现了 0.1 m的定位 精度。  相似文献   

11.
建立了基于布里渊时域反射(BOTDR)技术的分布式光纤传感入侵定位检测系统。采用自制的光纤单纵模分布反馈(DFB)激光器,利用边缘滤波(BPF)技术,简化了BOTDR系统中频率解调的方法,实现了对入侵应变事件的快速定位与检测。实验结果表明,当探测范围为10km时,系统的定位空间分辨率达到5m,应变分辨率达到200με,可以满足入侵定位实时检测的需求。  相似文献   

12.
Optical fiber sensors based on stimulated Brillouin scattering have now clearly demonstrated their excellent capability for long-range distributed strain and temperature measurements. The fiber is used as sensing element, and a value for temperature and/or strain can be obtained from any point along the fiber. After explaining the principle and presenting the standard implementation, the latest developments in this class of sensors will be introduced, such as the possibility to measure with a spatial resolution of 10 cm and below while preserving the full accuracy on the determination of temperature and strain.  相似文献   

13.
为了提高布里渊光时域反射仪(BOTDR)的传感长度和系统分辨率,分析了基于掺铒光纤放大器(EDFA)的BOTDR性能。研究表明,在被测光纤中,反向泵浦的EDFA在增益和噪声指数方面优于正向泵浦;未使用EDFA的BOTDR测得光纤长约为50km,而利用EDFA的BDTDR测量的距离大于80km;反向泵浦和正向泵浦的温度分辨率分别为0.5℃和1.0℃。结果表明,反向泵浦的BDTDR的性能高于正向泵浦。  相似文献   

14.
提出一种基于受激布里渊散射检测微波光载波信号光谱的方法。利用受激布里渊散射窄线宽的特性,解决了调制的微波信号频率低于常用的光谱分析仪分辨率时无法检测微波光载波信号光谱的问题,获得了较高的光谱检测分辨率。  相似文献   

15.
布里渊光相干域分析技术研究进展   总被引:1,自引:0,他引:1  
布里渊光相干域分析(BOCDA)技术可以实现长传感距离、高空间分辨率和高速的分布式温度或应变传感,在大型结构健康监测、现代工业等领域具有广阔的应用前景。分别综述了正弦频率调制型BOCDA、相位调制型BOCDA和宽带光源型BOCDA近年来的研究进展,其中宽带光源型BOCDA包括基于放大自发辐射的BOCDA和本课题组提出的混沌激光BOCDA。对比了这些技术的优缺点,分析了BOCDA系统的性能,并对BOCDA技术的发展前景进行了展望。  相似文献   

16.
针对连续分布式布里渊光纤传感器的传感特性与阈值问题,根据光纤中泵浦光与斯托克斯光之间耦合波方程,推导出布里渊散射阈值的关系式,通过计算分析该关系式与入射光的脉冲宽度、光纤半径和温度的关系,提出了基于脉冲光布里渊散射的阈值理论估算模型。在实验中,利用布里渊光时域反射仪系统,得出了脉冲光布里渊阈值特性,并与理论模型的结果进行对比分析,实验证明了该脉冲光阈值模型的结果与实验得到的布里渊阈值能够较好的吻合。  相似文献   

17.
为了进一步提高油气管道的监测,提出了一种基于分布式光纤布里渊(Brillouin)散射的油气管道的应力监测方法,并对模拟性油气管道进行了实验研究。通过分析应变与布里渊频移之间的关系,研究了管道的形变,并且对如何布置光纤进行了研究。实验结果表明,布里渊散射光纤传感技术能够准确监测并识别管道的应力变化。在长为200m光纤中,应变分辨率达2με,空间定位分辨率达到0.5m。  相似文献   

18.
龚华平  吕志伟  林殿阳  吕月兰 《激光技术》2006,30(2):136-137,141
采用布里渊噪声起源模型求解受激布里渊散射瞬态耦合波方程,数值模拟了截面光强为高斯分布的光束通过布里渊介质后的光强分布。结果表明,透射光束截面光强呈现出近似平顶的超高斯分布,光强峰值被限制,显示出受激布里渊散射的空间光限幅效应。当改变相互作用长度或者介质增益系数,即可以改变受激布里渊散射的产生阈值,进而改变输出脉冲空间限幅的幅值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号